yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of piecewise function | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

So we have an f of x right over here, and it's defined piecewise. For x less than zero, f of x is x plus one. For x greater than or equal to zero, f of x is cosine of pi x. We want to evaluate the definite integral from negative one to one of f of x dx.

You might immediately say, "Well, which of these versions of f of x am I going to take the anti-derivative from?" Because from negative 1 to 0, I would think about x plus 1, but then from 0 to 1, I would think about cosine pi x.

If you were thinking that, you're thinking in the right direction. The way that we can make this a little bit more straightforward is to actually split up this definite integral. This is going to be equal to the definite integral from negative 1 to 0 of f of x dx plus the integral from 0 to 1 of f of x dx.

Now why was it useful for me to split it up this way, in particular to split it up? I split the interval from negative one to one into two intervals: from negative one to zero and from zero to one. I did that because x equals zero is where we switch, where f of x switches from being x plus one to cosine pi x.

So if you look at the interval from negative one to zero, f of x is x plus one. So f of x here is x plus one. Then when you go from zero to one, f of x is cosine pi x. So, cosine of pi x.

Now we just have to evaluate each of these separately and add them together. So let's take the definite integral from negative 1 to 0 of x plus 1 dx.

Well, let's see, the anti-derivative of x plus 1 is... The anti-derivative of x is x squared over 2. I'm just incrementing the exponent and then dividing by that value, and then plus x. You could view this; I'm doing the same thing. If this is x to the 0, it'll be x to the first. x to the first over 1 is just x.

I'm going to evaluate that at 0 and subtract from that it evaluated at negative 1. And so this is going to be equal to... if I evaluate it at 0, let me do this in another color. If I evaluate it at 0, it's going to be 0 squared over 2, which is... well, I'll just write it: 0 squared over 2 plus 0. Well, all of that's just going to be equal to 0 minus it evaluated at negative 1.

So, minus negative 1 squared over 2 plus negative 1. So, negative 1 squared is just 1. So it's one-half plus negative 1. One-half plus negative one is... or one-half minus one is negative one-half. So all of that is negative one-half, but then we're subtracting negative one-half. Zero minus negative one-half is going to be equal to positive one-half.

So this is going to be equal to positive one-half. So this first part right over here is positive one-half, and now let's evaluate the integral from zero to 1 of cosine pi... I don't need that first parenthesis of cosine of pi x dx. What is this equal to?

Now, if we were just trying to find the anti-derivative of cosine of x, it's pretty straightforward. We know that the derivative with respect to x of sine of x is equal to cosine of x, but that's not what we have here. We have cosine of pi over pi x.

So there is a technique here; you could call it u substitution. You could say u is equal to pi x. If you don't know how to do that, you could still try to think about this where we could say, "All right, well maybe it involves sine of pi x somehow."

So the derivative with respect to x of sine of pi x would be what? Well, we would use the chain rule. It would be the derivative of the outside function with respect to the inside or sine of pi x with respect to pi x, which would be cosine of pi x, and then times the derivative of the inside function with respect to x, so it would be times pi.

Or you could say the derivative of sine pi x is pi cosine of pi x. Now we almost have that here, except we just need a pi. So what if we were to throw a pi right over here? But, so we don't change the value, we also multiply by 1 over pi.

So if you divide and multiply by the same number, you're not changing its value. 1 over pi times pi is just equal to 1. But this is useful because we now know that pi cosine pi x is the derivative of sine pi x.

So this is all going to be equal to... this is equal to 1. Let me take that 1 over pi. So this is equal to 1 over pi times... now we're going to evaluate. So the anti-derivative here we just said is sine of pi x, and we're going to evaluate that at one and at zero.

So this is going to be equal to 1 over pi times sine of pi... sine of pi minus sine of zero, which is just zero. Well, sine of pi, that's zero; sine of zero is zero. So you're going to have one over pi times zero minus zero, so this whole thing is just all going to be equal to zero.

So this first part was one-half; this second part right over here is equal to zero. So the whole definite integral is going to be one-half plus zero, which is equal to one-half.

So all of that together is equal to one-half.

More Articles

View All
Scott Cook - Founder and Chairman of the Executive Committee, Intuit | Khan Academy
All right, I think we’re ready to start. Anyone who wants to—anyone else wants to join us for the talk with Scott Cook, founder of Intuit? So I’ll just start. You know, for everyone here at Khan Academy who doesn’t know both Scott and Cigna Cook are, you …
Safari Live - Day 304 | National Geographic
[Music] This program features live coverage of an African safari and may include animal kills and caucuses. Viewer discretion is advised. Hello everyone, and a very warm welcome to a sunset drive. We are in the Mara Triangle in Kenya, and we have that be…
Crystalline and amorphous polymers | AP Chemistry | Khan Academy
Let’s talk a little bit about crystalline and amorphous polymers. Now, in previous videos we talked about crystalline versus amorphous solids. Crystalline solids have a very regular pattern; maybe they look something like this if you imagine the particle…
It’s True: Electric Eels Can Leap From the Water to Attack | National Geographic
The eel has this challenge that when it gives off electricity, that electricity is distributed around the eel in the water. A predator that is on land and reaching into that pool may not receive very much of a shock. You’ve got this tale from 1800 about …
A message from Sal Khan for the Khan Academy 2016 Annual Report
Welcome to the KH Academy 2016 annual report. In the actual text of the report, we’re going to go into a lot more detail on the financials and other things, but I’m hoping here to give you an overview, big picture. 2016 was a great year for Khan Academy.…
Welcome to the Body Farm | Explorer
[music playing] FRANCESCA FIORENTINI (VOICEOVER): That’s how I ended up in a body farm, the biggest one in the country. The Forensic Anthropology Research Center in South Texas studies how bodies decompose, and why. Their research helps law enforcement o…