yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Artificial Female Reproductive Tract Opens New Health Frontiers | National Geographic


2m read
·Nov 11, 2024

[Music] Avatar being a virtual representation of a human being, and in this case, it's a biological representation of the female reproductive tract. So, we call it Eva Tarr.

The system that we've invented together with Draper laboratories is a series of interconnecting cubes that have individual tubes that now connect each of the organs. So, we would have actual samples from enough, so we would have like a mouse ovary cultured on one of these strands. Well, the fluid can dynamically flow between all of these individual different compartments, just like each of our organs do, as if blood was carrying factors between different organs.

So, this would be the ovary. So, it's coming from here, going into here, and then flowing; it's a little miniature ovary. So, we actually have either the individual follicles from the ovary, and a follicle in the ovary are the cells that make the hormones like estrogen and progesterone, together with the O site, or we can actually have the entire ovary there.

That allows us to control the hormones over a 28-day menstrual cycle in a box. So, understanding how the uterus responds to hormones is really important. There is no animal model for a lot of the stuff that we study, and so the human is really the perfect model to study the end, the human endometrium, the uterus, and the diseases that are associated with it.

We were able to actually acquire primary human tissue from women who were having surgeries for different menstrual or reproductive related problems. This is the first time we've been able to model the entire reproductive hormone profile, and that profile of menstrual cycle hormones now allows us to connect those dynamic hormones to downstream tissues like the fallopian tube, uterus, cervix, together with a liver.

That integration now will allow us to understand better about the reproductive tract itself, which we don't have good models for, as well as reproductive diseases. So, now this is going to allow us to test drugs for individuals. So, we'll be able to eventually make individual organs from each person.

So, we'll be able to do personalized medicine. It's really going to open a whole new world of reproductive health testing. [Music]

More Articles

View All
Why Should We Go to Mars? | MARS
[Music] The reason humans should go to Mars is because we’re human. I mean, we are an exploring species. It’s what’s made us the dominant species on this planet. If we only lived in one little plot of land on Earth and we never went anywhere, I would say,…
How our actions are making raccoons smarter | Webby Award Winner | Nat Geo Explores
[Narrator] These little creatures can be complicated. They’re cute, but mischievous. It’s my pizza. They may have earned a bad rap from their antics, but their problem-solving skills inspire scientific studies. Interactions with them are unpredictable, an…
Scaling functions vertically: examples | Transformations of functions | Algebra 2 | Khan Academy
So we’re told this is the graph of function f right over here, and then they tell us that function g is defined as g of x is equal to one third f of x. What is the graph of g? If we were doing this on Khan Academy, this is a screenshot from our mobile app…
Buddha - Conquer Fear, Become Free
In The Dhammapada, the Buddha says that a wise person is beyond fear and, as a result, is truly free. And there’s a Zen story that shares a similar message. During a Japanese civil war, an army was taking control of different villages. And in one village,…
AMZN 52 week low, Dot-Com crash?
Amazon closed at a 52-week low. The whole market’s confused at what’s going to happen next. Here’s what you should be worried about, and perhaps why you shouldn’t be worried at all. First off, as a reminder, Amazon, Netflix, and non-dividend stocks are n…
Connecting period and frequency to angular velocity | AP Physics 1 | Khan Academy
What we’re going to do in this video is continue talking about uniform circular motion. In that context, we’re going to talk about the idea of period, which we denote with a capital T, or we tend to denote with a capital T, and a very related idea, and th…