yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives expressed as limits | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Let's see if we can find the limit as h approaches 0 of (5 \log(2 + h) - 5 \log(2)), all of that over (h). And I'll give you a little bit of a hint, because I know you're about to pause the video and try to work through it. Think of your derivative properties, especially the derivative of logarithmic functions, especially logarithmic functions in this case with base 10. If someone just writes log without the base, you can just assume that that is a 10 right over there. So pause the video and see if you can work through it.

All right, so the key here is to remember that if I have, if I have (f(x)), let me do it over here. I'll do it over here. (f(x)), and I want to find (f') of, let's say (f') of some number, let's say (a), this is going to be equal to the limit as (h) approaches 0 of (f(a + h) - f(a)), all of that over (h).

So this looks pretty close to that limit definition, except we have these fives here; but lucky for us, we can factor out those fives. We could factor them out, we could factor them out out front here, but if you just have a scalar times the expression, we know from our limit properties that we can actually take those out of the limit themselves.

So let's do that. Let's take both of these fives and factor them out, and so this whole thing is going to simplify to (5 \times \lim_{h \to 0} \frac{\log(2 + h) - \log(2)}{h}). Now, you might recognize what we have in yellow here. Let's think about it. What this is, if we had (f(x) = \log(x)) and we wanted to know what (f'(2)) is, well this would be the limit as (h) approaches 0 of (\frac{\log(2 + h) - \log(2)}{h}).

So this is really just a, what we see here, this by definition, this right over here is (f'(2)). If (f(x) = \log(x)), this is (f'(2)). So can we figure that out? If (f(x) = \log(x)), what is (f'(x))? (f'(x)) we don't need to use the limit definition; in fact, the limit definition is quite hard to evaluate, this limit. But we know how to take the derivative of logarithmic functions.

So (f'(x)) is going to be equal to (\frac{1}{\ln(b)} \cdot \frac{1}{x}), where (b) is our base. Our base here, we already talked about that, that is 10. So (\frac{1}{\ln(10)} \cdot \frac{1}{x}). If this was a natural log, well then this would be (\frac{1}{\ln(e)} \cdot \frac{1}{x}). (\ln(e)) is just 1, so that's where you get the (\frac{1}{x}). But if you have any other base, you put the (\ln(b)) right over here in the denominator.

So what is (f'(2))? (f'(2) = \frac{1}{\ln(10)} \cdot \frac{1}{2} = \frac{1}{2 \ln(10)}). So this whole thing has simplified, this whole thing is equal to (5 \times \frac{1}{2 \ln(10)}).

So I could actually just write it as it's equal to (\frac{5}{2 \ln(10)}). I could have written it as (2.5 \cdot \frac{1}{\ln(10)}). The key here for this type of exercise, you might immediately, let me see if I can evaluate this limit, be like, well this looks a lot like the derivative of a logarithmic function, especially the derivative when (x) is equal to 2, if we could just factor these 5s out.

So you factor out the 5, you say, hey this is the derivative of (\log(x)) when (x = 2). And so we know how to take the derivative of (\log(x)). If you don't know, we have videos where we prove this; we take the derivatives of logarithms with bases other than (e), and you just use that to actually find the derivative, then you evaluate it at 2, and then you're done.

More Articles

View All
Fractions in context
In this video, we’re going to think about how fractions can be used to represent things in the real world. So, here we’re told that on the sharks dive team, there are three divers. In third grade, there are eight total divers on the team. What fraction of…
Eutrophication and dead zones | Ecology | Khan Academy
We’re now going to talk about something called UT tropication. UT tropication comes from, or it’s derived from, the Greek for well-nourished, referring to “well,” and then “trophic” or “trophia,” referring to nourished or nourishment. You might think that…
Danica Patrick Eats a Scorpion | Running Wild with Bear Grylls
BEAR: Let’s make a little nature’s candle out of rocks. DANICA: Get some rocks? - Yeah. DANICA: OK. BEAR (VOICEOVER): Danica Patrick and I are in the heart of the vast Utah desert. She doesn’t know it yet, but Danica just found us something to eat. Oh!…
Intro to Economics - Course Trailer
Welcome to Introduction to Economics. You are about to become an economically-literate person. You might not realize this, but you’ve always been an economic actor. When you’ve decided to spend your time doing one thing, you might have foregone being ab…
TIL: We Waste One-Third of Food Worldwide | Today I Learned
Now, here we have an ordinary loaf of homemade bread. Watch closely: bread disappearing before our very eyes. “Oh madam, that is nothing! You far excel me at making bread disappear.” “What are you talking about? I can’t make anything disappear. A third …
The Market Revolution - part 3
So why do we care about the market Revolution? The Industrial Revolution and the transportation and communication Revolutions of the early 19th century had a major impact on American society both in the short term and in the long term. In this video, I wa…