yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives expressed as limits | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Let's see if we can find the limit as h approaches 0 of (5 \log(2 + h) - 5 \log(2)), all of that over (h). And I'll give you a little bit of a hint, because I know you're about to pause the video and try to work through it. Think of your derivative properties, especially the derivative of logarithmic functions, especially logarithmic functions in this case with base 10. If someone just writes log without the base, you can just assume that that is a 10 right over there. So pause the video and see if you can work through it.

All right, so the key here is to remember that if I have, if I have (f(x)), let me do it over here. I'll do it over here. (f(x)), and I want to find (f') of, let's say (f') of some number, let's say (a), this is going to be equal to the limit as (h) approaches 0 of (f(a + h) - f(a)), all of that over (h).

So this looks pretty close to that limit definition, except we have these fives here; but lucky for us, we can factor out those fives. We could factor them out, we could factor them out out front here, but if you just have a scalar times the expression, we know from our limit properties that we can actually take those out of the limit themselves.

So let's do that. Let's take both of these fives and factor them out, and so this whole thing is going to simplify to (5 \times \lim_{h \to 0} \frac{\log(2 + h) - \log(2)}{h}). Now, you might recognize what we have in yellow here. Let's think about it. What this is, if we had (f(x) = \log(x)) and we wanted to know what (f'(2)) is, well this would be the limit as (h) approaches 0 of (\frac{\log(2 + h) - \log(2)}{h}).

So this is really just a, what we see here, this by definition, this right over here is (f'(2)). If (f(x) = \log(x)), this is (f'(2)). So can we figure that out? If (f(x) = \log(x)), what is (f'(x))? (f'(x)) we don't need to use the limit definition; in fact, the limit definition is quite hard to evaluate, this limit. But we know how to take the derivative of logarithmic functions.

So (f'(x)) is going to be equal to (\frac{1}{\ln(b)} \cdot \frac{1}{x}), where (b) is our base. Our base here, we already talked about that, that is 10. So (\frac{1}{\ln(10)} \cdot \frac{1}{x}). If this was a natural log, well then this would be (\frac{1}{\ln(e)} \cdot \frac{1}{x}). (\ln(e)) is just 1, so that's where you get the (\frac{1}{x}). But if you have any other base, you put the (\ln(b)) right over here in the denominator.

So what is (f'(2))? (f'(2) = \frac{1}{\ln(10)} \cdot \frac{1}{2} = \frac{1}{2 \ln(10)}). So this whole thing has simplified, this whole thing is equal to (5 \times \frac{1}{2 \ln(10)}).

So I could actually just write it as it's equal to (\frac{5}{2 \ln(10)}). I could have written it as (2.5 \cdot \frac{1}{\ln(10)}). The key here for this type of exercise, you might immediately, let me see if I can evaluate this limit, be like, well this looks a lot like the derivative of a logarithmic function, especially the derivative when (x) is equal to 2, if we could just factor these 5s out.

So you factor out the 5, you say, hey this is the derivative of (\log(x)) when (x = 2). And so we know how to take the derivative of (\log(x)). If you don't know, we have videos where we prove this; we take the derivatives of logarithms with bases other than (e), and you just use that to actually find the derivative, then you evaluate it at 2, and then you're done.

More Articles

View All
Conditions for MVT: table | Existence theorems | AP Calculus AB | Khan Academy
So we’ve been given the value of h of x at a few values of x, and then we’re told James said that since h of 7 minus h of 3 over 7 minus 3 is equal to 1. So this is really the average rate of change between x is equal to 3 and x is equal to 7, between th…
Gordon Ramsay Harvests Glacial Ice Cubes | Gordon Ramsay: Uncharted
After a rough voyage, we’ve arrived at the end of the Tracy Arm Fjord to search for glacial ice. “Oh my God, it’s a jelly! Gorgeous, it’s beautiful!” So we’re looking for what size. “So what we want to look for is something that’s very rounded, right? U…
The Guerilla Cyclists of Mexico City | Podcast | Overheard at National Geographic
[Music] I was born and raised in the chaotic streets of Mexico City. This is Jorge Kanyes, an activist. He’s standing at an intersection in Mexico City, wearing a black mask and a cape. I was an ordinary citizen until one day I went to a lucha libre match…
Meet Warriors on a Mission to Help Lions and Humans Coexist | Expedition Raw
We have never seen the river dry at this time of the year. There’s not much grass and is no enough. What a state! A foreign world. The water is underground, and this is how we get water for both whirling, powerless stuff and also for people. This is how w…
Examples establishing conditions for MVT
This table gives us a few values of the function g, so we know what g of x is equal to at these values right over here: x is equal to negative 2, negative 1, 0, and 1. It says Raphael said that since g of 1 minus g of 0 over 1 minus 0 is equal to negative…
Life lessons in the Alaskan wilderness | Alaska: The Next Generation
Gotta have a subsistence lifestyle way to live out here. We eat from the sea. From the birds. Not really other ways to, uh, get food around here. Salmon only comes once a year and, uh, gotta try and the time they come around. Argh. Come on fish. You see a…