yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives expressed as limits | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Let's see if we can find the limit as h approaches 0 of (5 \log(2 + h) - 5 \log(2)), all of that over (h). And I'll give you a little bit of a hint, because I know you're about to pause the video and try to work through it. Think of your derivative properties, especially the derivative of logarithmic functions, especially logarithmic functions in this case with base 10. If someone just writes log without the base, you can just assume that that is a 10 right over there. So pause the video and see if you can work through it.

All right, so the key here is to remember that if I have, if I have (f(x)), let me do it over here. I'll do it over here. (f(x)), and I want to find (f') of, let's say (f') of some number, let's say (a), this is going to be equal to the limit as (h) approaches 0 of (f(a + h) - f(a)), all of that over (h).

So this looks pretty close to that limit definition, except we have these fives here; but lucky for us, we can factor out those fives. We could factor them out, we could factor them out out front here, but if you just have a scalar times the expression, we know from our limit properties that we can actually take those out of the limit themselves.

So let's do that. Let's take both of these fives and factor them out, and so this whole thing is going to simplify to (5 \times \lim_{h \to 0} \frac{\log(2 + h) - \log(2)}{h}). Now, you might recognize what we have in yellow here. Let's think about it. What this is, if we had (f(x) = \log(x)) and we wanted to know what (f'(2)) is, well this would be the limit as (h) approaches 0 of (\frac{\log(2 + h) - \log(2)}{h}).

So this is really just a, what we see here, this by definition, this right over here is (f'(2)). If (f(x) = \log(x)), this is (f'(2)). So can we figure that out? If (f(x) = \log(x)), what is (f'(x))? (f'(x)) we don't need to use the limit definition; in fact, the limit definition is quite hard to evaluate, this limit. But we know how to take the derivative of logarithmic functions.

So (f'(x)) is going to be equal to (\frac{1}{\ln(b)} \cdot \frac{1}{x}), where (b) is our base. Our base here, we already talked about that, that is 10. So (\frac{1}{\ln(10)} \cdot \frac{1}{x}). If this was a natural log, well then this would be (\frac{1}{\ln(e)} \cdot \frac{1}{x}). (\ln(e)) is just 1, so that's where you get the (\frac{1}{x}). But if you have any other base, you put the (\ln(b)) right over here in the denominator.

So what is (f'(2))? (f'(2) = \frac{1}{\ln(10)} \cdot \frac{1}{2} = \frac{1}{2 \ln(10)}). So this whole thing has simplified, this whole thing is equal to (5 \times \frac{1}{2 \ln(10)}).

So I could actually just write it as it's equal to (\frac{5}{2 \ln(10)}). I could have written it as (2.5 \cdot \frac{1}{\ln(10)}). The key here for this type of exercise, you might immediately, let me see if I can evaluate this limit, be like, well this looks a lot like the derivative of a logarithmic function, especially the derivative when (x) is equal to 2, if we could just factor these 5s out.

So you factor out the 5, you say, hey this is the derivative of (\log(x)) when (x = 2). And so we know how to take the derivative of (\log(x)). If you don't know, we have videos where we prove this; we take the derivatives of logarithms with bases other than (e), and you just use that to actually find the derivative, then you evaluate it at 2, and then you're done.

More Articles

View All
Sources of income during retirement | Investments and retirement | Financial literacy | Khan Academy
Let’s talk a little bit about sources of income during retirement. So, we’re assuming you’re retired, you’re not working, so you’re not going to get that income. But one of them is perhaps just your straight-up investment income. You save money over time…
Shall We Play A Game…?
Shall we play a game? Perhaps the greatest strategy game yet devised: Rock, paper, scissors. On these three, through human history, have hung so many critical moments, their outcome determined by rock defeating scissors, scissors defeating paper, or paper…
The Harsh Truth About Women | Nietzsche
Role-playing speech: [Music] They lied to you. Society, history, even your own desires, wrapped in Illusions. Women are not what they told you, not Angels, not villains, but something far more unsettling and far more powerful. Over a century ago, n saw t…
Decimal multiplication place value
This is an exercise from Khan Academy. It tells us that the product 75 times 61 is equal to 4575. Use the previous fact to evaluate as a decimal this right over here: 7.5 times 0.061. Pause this video and see if you can have a go at it. All right, now le…
Taoist Wisdom For Inner Peace
Taoism is an ancient Chinese mystical, philosophical, and religious tradition that emphasizes living in agreement with the Tao. The main work in Taoism is the Tao Te Ching, created by a mysterious author called Lao Tzu, which contains profound wisdom and …
Rational Optimism Is the Way Out
In general, professions in which you get your feedback from other members of that profession tend to get corrupted. When you see a journalist writing articles to impress other journalists, or a restauranteur running a restaurant that’s designed to impress…