yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives expressed as limits | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Let's see if we can find the limit as h approaches 0 of (5 \log(2 + h) - 5 \log(2)), all of that over (h). And I'll give you a little bit of a hint, because I know you're about to pause the video and try to work through it. Think of your derivative properties, especially the derivative of logarithmic functions, especially logarithmic functions in this case with base 10. If someone just writes log without the base, you can just assume that that is a 10 right over there. So pause the video and see if you can work through it.

All right, so the key here is to remember that if I have, if I have (f(x)), let me do it over here. I'll do it over here. (f(x)), and I want to find (f') of, let's say (f') of some number, let's say (a), this is going to be equal to the limit as (h) approaches 0 of (f(a + h) - f(a)), all of that over (h).

So this looks pretty close to that limit definition, except we have these fives here; but lucky for us, we can factor out those fives. We could factor them out, we could factor them out out front here, but if you just have a scalar times the expression, we know from our limit properties that we can actually take those out of the limit themselves.

So let's do that. Let's take both of these fives and factor them out, and so this whole thing is going to simplify to (5 \times \lim_{h \to 0} \frac{\log(2 + h) - \log(2)}{h}). Now, you might recognize what we have in yellow here. Let's think about it. What this is, if we had (f(x) = \log(x)) and we wanted to know what (f'(2)) is, well this would be the limit as (h) approaches 0 of (\frac{\log(2 + h) - \log(2)}{h}).

So this is really just a, what we see here, this by definition, this right over here is (f'(2)). If (f(x) = \log(x)), this is (f'(2)). So can we figure that out? If (f(x) = \log(x)), what is (f'(x))? (f'(x)) we don't need to use the limit definition; in fact, the limit definition is quite hard to evaluate, this limit. But we know how to take the derivative of logarithmic functions.

So (f'(x)) is going to be equal to (\frac{1}{\ln(b)} \cdot \frac{1}{x}), where (b) is our base. Our base here, we already talked about that, that is 10. So (\frac{1}{\ln(10)} \cdot \frac{1}{x}). If this was a natural log, well then this would be (\frac{1}{\ln(e)} \cdot \frac{1}{x}). (\ln(e)) is just 1, so that's where you get the (\frac{1}{x}). But if you have any other base, you put the (\ln(b)) right over here in the denominator.

So what is (f'(2))? (f'(2) = \frac{1}{\ln(10)} \cdot \frac{1}{2} = \frac{1}{2 \ln(10)}). So this whole thing has simplified, this whole thing is equal to (5 \times \frac{1}{2 \ln(10)}).

So I could actually just write it as it's equal to (\frac{5}{2 \ln(10)}). I could have written it as (2.5 \cdot \frac{1}{\ln(10)}). The key here for this type of exercise, you might immediately, let me see if I can evaluate this limit, be like, well this looks a lot like the derivative of a logarithmic function, especially the derivative when (x) is equal to 2, if we could just factor these 5s out.

So you factor out the 5, you say, hey this is the derivative of (\log(x)) when (x = 2). And so we know how to take the derivative of (\log(x)). If you don't know, we have videos where we prove this; we take the derivatives of logarithms with bases other than (e), and you just use that to actually find the derivative, then you evaluate it at 2, and then you're done.

More Articles

View All
Solving exponential equations using exponent properties (advanced) | High School Math | Khan Academy
So let’s get even more practice solving some exponential equations. I have two different exponential equations here, and like always, pause the video and see if you can solve for x in both of them. All right, let’s tackle this one in purple first. You mi…
Wolves in Yellowstone, LIVE! | Yellowstone Live
How’re you guys doing? We’re live in West Yellowstone ahead of Yellowstone Live tonight at 9:00, 8:00 Central on National Geographic and Nat Geo Wild with Trent, a naturalist at the Grizzly Wolf Discovery Center. Thank you so much for being here. Q: Tell…
A school of hippos gives an aggressive warning sign | Primal Survivor: Extreme African Safari
(Exhales forcefully) But it’s not crocodiles I should have been watching out for. Instead, it’s one of the most temperamental animals out here. (Hippo snorting) Wow, there are a lot of eyes looking in my direction, a lot of ears pointed in my direction. T…
Wicked Laugh | Wicked Tuna
There’s your balloon ball! Get that! The wicked pissah team fell apart for a little bit, but now we’re running on all cylinders. We had a great week last week; we had a really good time. We caught two fish through at a time on the pizza. We made 16 grand;…
The Deadliest Virus on Earth
In the 1970s, thousands of Chickenheads rained from the sky in Europe, making foxes and other wildlife confused and very happy. Why? They were filled with a vaccine to fight the deadliest virus known to humanity. Since the 1930s, a rabies epidemic had bee…
The Space Race | Meet Ed Dwight | National Geographic Documentary Films
My hope was just getting into space in any kind of way, but they were not gonna let that happen. And they said, number one, I wasn’t tall enough. I was Catholic. I wasn’t Black enough. I was not the model of the Negro race. I was a one-man operation when …