yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives expressed as limits | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Let's see if we can find the limit as h approaches 0 of (5 \log(2 + h) - 5 \log(2)), all of that over (h). And I'll give you a little bit of a hint, because I know you're about to pause the video and try to work through it. Think of your derivative properties, especially the derivative of logarithmic functions, especially logarithmic functions in this case with base 10. If someone just writes log without the base, you can just assume that that is a 10 right over there. So pause the video and see if you can work through it.

All right, so the key here is to remember that if I have, if I have (f(x)), let me do it over here. I'll do it over here. (f(x)), and I want to find (f') of, let's say (f') of some number, let's say (a), this is going to be equal to the limit as (h) approaches 0 of (f(a + h) - f(a)), all of that over (h).

So this looks pretty close to that limit definition, except we have these fives here; but lucky for us, we can factor out those fives. We could factor them out, we could factor them out out front here, but if you just have a scalar times the expression, we know from our limit properties that we can actually take those out of the limit themselves.

So let's do that. Let's take both of these fives and factor them out, and so this whole thing is going to simplify to (5 \times \lim_{h \to 0} \frac{\log(2 + h) - \log(2)}{h}). Now, you might recognize what we have in yellow here. Let's think about it. What this is, if we had (f(x) = \log(x)) and we wanted to know what (f'(2)) is, well this would be the limit as (h) approaches 0 of (\frac{\log(2 + h) - \log(2)}{h}).

So this is really just a, what we see here, this by definition, this right over here is (f'(2)). If (f(x) = \log(x)), this is (f'(2)). So can we figure that out? If (f(x) = \log(x)), what is (f'(x))? (f'(x)) we don't need to use the limit definition; in fact, the limit definition is quite hard to evaluate, this limit. But we know how to take the derivative of logarithmic functions.

So (f'(x)) is going to be equal to (\frac{1}{\ln(b)} \cdot \frac{1}{x}), where (b) is our base. Our base here, we already talked about that, that is 10. So (\frac{1}{\ln(10)} \cdot \frac{1}{x}). If this was a natural log, well then this would be (\frac{1}{\ln(e)} \cdot \frac{1}{x}). (\ln(e)) is just 1, so that's where you get the (\frac{1}{x}). But if you have any other base, you put the (\ln(b)) right over here in the denominator.

So what is (f'(2))? (f'(2) = \frac{1}{\ln(10)} \cdot \frac{1}{2} = \frac{1}{2 \ln(10)}). So this whole thing has simplified, this whole thing is equal to (5 \times \frac{1}{2 \ln(10)}).

So I could actually just write it as it's equal to (\frac{5}{2 \ln(10)}). I could have written it as (2.5 \cdot \frac{1}{\ln(10)}). The key here for this type of exercise, you might immediately, let me see if I can evaluate this limit, be like, well this looks a lot like the derivative of a logarithmic function, especially the derivative when (x) is equal to 2, if we could just factor these 5s out.

So you factor out the 5, you say, hey this is the derivative of (\log(x)) when (x = 2). And so we know how to take the derivative of (\log(x)). If you don't know, we have videos where we prove this; we take the derivatives of logarithms with bases other than (e), and you just use that to actually find the derivative, then you evaluate it at 2, and then you're done.

More Articles

View All
Ask me anything with Sal Khan: April 20 | Homeroom with Sal
Hi everyone. Welcome to the daily homeroom livestream! This is just a way for all of us to stay in touch during this time of school closures. As we have in homeroom in the real world, the physical world, which we all now really miss, it’s a time for us to…
Confidence interval simulation | Confidence intervals | AP Statistics | Khan Academy
The goal of this video is to use this scratch pad on Khan Academy, that was written by Khan Academy user Charlotte Allen, in order to get a better intuitive sense of confidence intervals. So, we’re here; we’re dealing with a gumball machine where a certa…
Meet the Explorers | OceanXplorers | National Geographic
The Ocean: The Last Frontier on Earth. So much is unexplored and unexplained. To change that, okay, let’s do it! Ready: a kick-ass team of insanely talented specialists is setting out to push the frontiers of what we know about our oceans. Just stunningly…
How to Make a Delicious Meal For Under $10 | Chef Wonderful
Who made this? Oh, I did! Wow, I’m gonna cry. It’s a masterpiece that should get an Emmy, that should get a Tony, all of it. And that still wouldn’t be enough for what that was. [Music] [Applause] [Music] Chef Wonderful here! Let’s talk about suffolak…
Behind the Scenes of Marvel Studios' Moon Knight | National Geographic
I’d love to take this opportunity to show you around with Moon Knight. We’re in a very different world. The world building is so complete and interesting, and it’s hard to paint such a big canvas. While you watch the show, you will learn about ancient Eg…
Does Your Startup Need To Be In San Francisco?
We’re working together. We’re in the same room right now. Yes, we get to live in the same area, even though our personal decisions about where we live are wildly different. Yeah, very different lives. I don’t have a yard. I have kids too. [Music] All ri…