yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing related rates problems: equations (Pythagoras) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Two cars are driving towards an intersection from perpendicular directions. The first car's velocity is 50 kilometers per hour, and the second car's velocity is 90 kilometers per hour. At a certain instant ( t_0 ), the first car is a distance ( X_{t_0} ) of half a kilometer from the intersection, and the second car is a distance ( Y_{t_0} ) of 1.2 kilometers from the intersection. What is the rate of change of the distance ( D(t) ) between the cars at that instant?

So at ( t_0 ), which equation should be used to solve the problem? They give us a choice of four equations right over here. So you could pause the video and try to work through it on your own, but I'm about to do it as well. So let's just draw what's going on; that's always a healthy thing to do.

Two cars are driving towards an intersection from perpendicular directions. So let's say that this is one car right over here, and it is moving in the direct x direction towards that intersection, which is right over there. And then you have another car that is moving in the y direction. So let's say it's moving like this.

So this is the other car. I should have maybe done a top view. Well, here we go. This square represents the car, and it is moving in that direction. Now they say at a certain instant ( t_0 ), so let's draw that instant. The first car is a distance ( X_{t_0} ) of 0.5 kilometers, so this distance right over here, let's just call this ( X(t) ), and let's call this distance right over here ( Y(t) ).

Now, how does the distance between the cars relate to ( X(t) ) and ( Y(t) )? Well, we could just use the distance formula, which is essentially just the Pythagorean theorem, to say, well, the distance between the cars would be the hypotenuse of this right triangle. Remember, they're traveling from perpendicular directions, so that's a right triangle there.

So this distance right over here would be ( X(t)^2 + Y(t)^2 ) and the square root of that. And that's just the Pythagorean theorem right over here. This would be ( D(t) ), or we could say that ( D(t)^2 ) is equal to ( X(t)^2 + Y(t)^2 ).

So that's the relationship between ( D(t) ), ( X(t) ), and ( Y(t) ), and it's useful for solving this problem because now we could take the derivative of both sides of this equation with respect to ( t ). We’d be using various derivative rules, including the chain rule, in order to do it. This would give us a relationship between the rate of change of ( D(t) ), which would be ( D'(t) ), and the rate of change of ( X(t) ), ( Y(t) ), and ( X(t) ), and ( Y(t) ) themselves.

So if we look at these choices right over here, we indeed see that ( D ) sets up that exact same relationship that we just did ourselves. It shows that the distance squared between the cars is equal to that ( x ) distance from the intersection squared plus the ( y ) distance from the intersection squared. Then we can take the derivative of both sides to actually figure out this related rates question.

More Articles

View All
Representing points in 3d | Multivariable calculus | Khan Academy
So, a lot of the ways that we represent multivariable functions assume that you’re fluent with understanding how to represent points in three dimensions and also how to represent vectors in three dimensions. So, I thought I’d make a little video here to …
Two Vortex Rings Colliding in SLOW MOTION - Smarter Every Day 195
[Gasps] Was it – that was it, wasn’t it? I think we’ve been doing it so long we don’t know what perfect looks like. [Laughs] What’s up, I’m Destin. I do not even know how to start this video. I’ll just try to explain it and – I mean, this is a huge deal. …
15 Short Books With Huge Impact
We live in a world where time is often more precious than money or many other things. But what if you could experience the joy of reading without breaking a sweat or committing to a long and draining book? Welcome, Aluxer! Today we’re talking about 15 boo…
Most Important Lifestyle Habits Of Successful Founders
Let’s examine the facts. Yes, fact, fact, fact, fact, great, you’re fine. Yes, however, sometimes we look at the facts, and you’re not fine. [Music] This is Michael Seibel with Dalton Caldwell. In our last video, we talked about the setbacks that make fou…
TIL: We Waste One-Third of Food Worldwide | Today I Learned
Now, here we have an ordinary loaf of homemade bread. Watch closely: bread disappearing before our very eyes. “Oh madam, that is nothing! You far excel me at making bread disappear.” “What are you talking about? I can’t make anything disappear. A third …
YC Founders Made These Fundraising Mistakes
If you look at why the Google founders are the Google founders and still have all this control over their company, you can look all the way back in time to the moment of the earliest fundraisers. They were not desperate for cash and load leveraged. Hey, …