yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing related rates problems: equations (Pythagoras) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Two cars are driving towards an intersection from perpendicular directions. The first car's velocity is 50 kilometers per hour, and the second car's velocity is 90 kilometers per hour. At a certain instant ( t_0 ), the first car is a distance ( X_{t_0} ) of half a kilometer from the intersection, and the second car is a distance ( Y_{t_0} ) of 1.2 kilometers from the intersection. What is the rate of change of the distance ( D(t) ) between the cars at that instant?

So at ( t_0 ), which equation should be used to solve the problem? They give us a choice of four equations right over here. So you could pause the video and try to work through it on your own, but I'm about to do it as well. So let's just draw what's going on; that's always a healthy thing to do.

Two cars are driving towards an intersection from perpendicular directions. So let's say that this is one car right over here, and it is moving in the direct x direction towards that intersection, which is right over there. And then you have another car that is moving in the y direction. So let's say it's moving like this.

So this is the other car. I should have maybe done a top view. Well, here we go. This square represents the car, and it is moving in that direction. Now they say at a certain instant ( t_0 ), so let's draw that instant. The first car is a distance ( X_{t_0} ) of 0.5 kilometers, so this distance right over here, let's just call this ( X(t) ), and let's call this distance right over here ( Y(t) ).

Now, how does the distance between the cars relate to ( X(t) ) and ( Y(t) )? Well, we could just use the distance formula, which is essentially just the Pythagorean theorem, to say, well, the distance between the cars would be the hypotenuse of this right triangle. Remember, they're traveling from perpendicular directions, so that's a right triangle there.

So this distance right over here would be ( X(t)^2 + Y(t)^2 ) and the square root of that. And that's just the Pythagorean theorem right over here. This would be ( D(t) ), or we could say that ( D(t)^2 ) is equal to ( X(t)^2 + Y(t)^2 ).

So that's the relationship between ( D(t) ), ( X(t) ), and ( Y(t) ), and it's useful for solving this problem because now we could take the derivative of both sides of this equation with respect to ( t ). We’d be using various derivative rules, including the chain rule, in order to do it. This would give us a relationship between the rate of change of ( D(t) ), which would be ( D'(t) ), and the rate of change of ( X(t) ), ( Y(t) ), and ( X(t) ), and ( Y(t) ) themselves.

So if we look at these choices right over here, we indeed see that ( D ) sets up that exact same relationship that we just did ourselves. It shows that the distance squared between the cars is equal to that ( x ) distance from the intersection squared plus the ( y ) distance from the intersection squared. Then we can take the derivative of both sides to actually figure out this related rates question.

More Articles

View All
My Lightbulb Moment: Using Solar Energy to Feed a Village | National Geographic
Energy is life. My light bulb moment came during a trip to a remote part of China in 1994. We delivered simple solar home systems to families that had never before experienced electricity. Witnessing these families flip a switch and have electric lights c…
Animals Cannot Be Blue | Explorer
[music playing] Sometimes nature plays tricks on us. What we think we know to be true may not be. Animals, for example, have lots of secrets, like their remarkable use of color to attract mates or disguise themselves from predators. Well, it turns out the…
Breaking down forces for free body diagrams | AP Physics 1 | Khan Academy
Let’s say we have some type of hard flat frictionless surface right over here. That’s my drawing of a hard flat frictionless surface. On that, I have a block, and that block is not accelerating in any direction; it is just sitting there. Let’s say we kno…
Car Cannibals | Dirty Rotten Survival
Here’s the deal, fellas. The challenge for tonight: we’re going to cannibalize the vehicles, in some way, shape, or form, to take things with us that will make us more comfortable to camp. Take anything we want off it. Ex: yes, you can take anything off t…
The Soul of Music: Meklit Hadero Tells Stories of Migration | Overheard at National Geographic
[Music] Hey there, I’m Kyrie Douglas. I’m a producer here at Overheard, and this is the final episode of our four-part series focusing on music exploration and Black history. It’s called “The Soul of Music,” and National Geographic explorers will be sitti…
The Secret of Musical Genius | Podcast | Overheard at National Geographic
My name is Kedren Bryant, and I’m a recording artist, and I’m 13 years old. Kedren is a child prodigy. I started singing at the age of five years old, and around seven that’s when I really got serious and started really practicing and watching videos. In …