yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing related rates problems: equations (Pythagoras) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Two cars are driving towards an intersection from perpendicular directions. The first car's velocity is 50 kilometers per hour, and the second car's velocity is 90 kilometers per hour. At a certain instant ( t_0 ), the first car is a distance ( X_{t_0} ) of half a kilometer from the intersection, and the second car is a distance ( Y_{t_0} ) of 1.2 kilometers from the intersection. What is the rate of change of the distance ( D(t) ) between the cars at that instant?

So at ( t_0 ), which equation should be used to solve the problem? They give us a choice of four equations right over here. So you could pause the video and try to work through it on your own, but I'm about to do it as well. So let's just draw what's going on; that's always a healthy thing to do.

Two cars are driving towards an intersection from perpendicular directions. So let's say that this is one car right over here, and it is moving in the direct x direction towards that intersection, which is right over there. And then you have another car that is moving in the y direction. So let's say it's moving like this.

So this is the other car. I should have maybe done a top view. Well, here we go. This square represents the car, and it is moving in that direction. Now they say at a certain instant ( t_0 ), so let's draw that instant. The first car is a distance ( X_{t_0} ) of 0.5 kilometers, so this distance right over here, let's just call this ( X(t) ), and let's call this distance right over here ( Y(t) ).

Now, how does the distance between the cars relate to ( X(t) ) and ( Y(t) )? Well, we could just use the distance formula, which is essentially just the Pythagorean theorem, to say, well, the distance between the cars would be the hypotenuse of this right triangle. Remember, they're traveling from perpendicular directions, so that's a right triangle there.

So this distance right over here would be ( X(t)^2 + Y(t)^2 ) and the square root of that. And that's just the Pythagorean theorem right over here. This would be ( D(t) ), or we could say that ( D(t)^2 ) is equal to ( X(t)^2 + Y(t)^2 ).

So that's the relationship between ( D(t) ), ( X(t) ), and ( Y(t) ), and it's useful for solving this problem because now we could take the derivative of both sides of this equation with respect to ( t ). We’d be using various derivative rules, including the chain rule, in order to do it. This would give us a relationship between the rate of change of ( D(t) ), which would be ( D'(t) ), and the rate of change of ( X(t) ), ( Y(t) ), and ( X(t) ), and ( Y(t) ) themselves.

So if we look at these choices right over here, we indeed see that ( D ) sets up that exact same relationship that we just did ourselves. It shows that the distance squared between the cars is equal to that ( x ) distance from the intersection squared plus the ( y ) distance from the intersection squared. Then we can take the derivative of both sides to actually figure out this related rates question.

More Articles

View All
No More Gas | The Worst Energy Crisis In 40 Years
The U.S. is facing a diesel shortage. The price of diesel has been soaring for months. In 25 days from now, there will be no more diesel, up 27 and 28 percent. It’s a very, very high bill. “What’s up guys, it’s Graham here.” So, in 1973, the United State…
Hippos Eating Watermelon | Magic of Disney's Animal Kingdom
The sun shines at Disney’s Animal Kingdom theme park, and at the Kilimanjaro Safaris, the hippos prepare for breakfast. Tequila lives in a blowout of six hippos, one of the largest in managed care. Every day when the hippos come out, we like to do a littl…
What's Driving Tigers Toward Extinction? | National Geographic
[Music] The tiger, the largest of the big cats, is also the most endangered. The population of wild tigers has declined more than 95% in the past century. What’s driving tigers toward extinction, and can we save them? Fewer than 4,000 tigers remain in th…
Is This the End of Cathie Wood? | ARKK Fund Collapsing
One of the new stars in the investment world over the past few years has been Kathy Wood. She has had a successful and established career on Wall Street but really became a household name relatively recently with the company she founded, Arkhanvest, and i…
The Deutsch Files IV
I can only start with what understanding I want, right? And I know I’ve asked you this before, but I want to be pedantically exhaustive about connecting the four theories of the fabric of reality. The reason I bring that up is because I think most people …
The Problem With the Trolley Problem
You’ve probably heard of the trolley problem, especially if you’re at all interested in philosophy or ethics. Lately, it’s been a subject of discussion when discussing autonomous cars and was referenced explicitly in the show The Good Place. Some people t…