yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing related rates problems: equations (Pythagoras) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Two cars are driving towards an intersection from perpendicular directions. The first car's velocity is 50 kilometers per hour, and the second car's velocity is 90 kilometers per hour. At a certain instant ( t_0 ), the first car is a distance ( X_{t_0} ) of half a kilometer from the intersection, and the second car is a distance ( Y_{t_0} ) of 1.2 kilometers from the intersection. What is the rate of change of the distance ( D(t) ) between the cars at that instant?

So at ( t_0 ), which equation should be used to solve the problem? They give us a choice of four equations right over here. So you could pause the video and try to work through it on your own, but I'm about to do it as well. So let's just draw what's going on; that's always a healthy thing to do.

Two cars are driving towards an intersection from perpendicular directions. So let's say that this is one car right over here, and it is moving in the direct x direction towards that intersection, which is right over there. And then you have another car that is moving in the y direction. So let's say it's moving like this.

So this is the other car. I should have maybe done a top view. Well, here we go. This square represents the car, and it is moving in that direction. Now they say at a certain instant ( t_0 ), so let's draw that instant. The first car is a distance ( X_{t_0} ) of 0.5 kilometers, so this distance right over here, let's just call this ( X(t) ), and let's call this distance right over here ( Y(t) ).

Now, how does the distance between the cars relate to ( X(t) ) and ( Y(t) )? Well, we could just use the distance formula, which is essentially just the Pythagorean theorem, to say, well, the distance between the cars would be the hypotenuse of this right triangle. Remember, they're traveling from perpendicular directions, so that's a right triangle there.

So this distance right over here would be ( X(t)^2 + Y(t)^2 ) and the square root of that. And that's just the Pythagorean theorem right over here. This would be ( D(t) ), or we could say that ( D(t)^2 ) is equal to ( X(t)^2 + Y(t)^2 ).

So that's the relationship between ( D(t) ), ( X(t) ), and ( Y(t) ), and it's useful for solving this problem because now we could take the derivative of both sides of this equation with respect to ( t ). We’d be using various derivative rules, including the chain rule, in order to do it. This would give us a relationship between the rate of change of ( D(t) ), which would be ( D'(t) ), and the rate of change of ( X(t) ), ( Y(t) ), and ( X(t) ), and ( Y(t) ) themselves.

So if we look at these choices right over here, we indeed see that ( D ) sets up that exact same relationship that we just did ourselves. It shows that the distance squared between the cars is equal to that ( x ) distance from the intersection squared plus the ( y ) distance from the intersection squared. Then we can take the derivative of both sides to actually figure out this related rates question.

More Articles

View All
A day in my life in JAPAN vlog- A productive day
Good morning. Good morning! I start my day by having my grandparents’ traditional Japanese breakfast. We always have a piece of salmon grilled and then a huge salad, rice, and a miso soup. After my breakfast, I always have a cup of coffee because I’m lite…
The Perils of Downhill Cycling | Science of Stupid: Ridiculous Fails
The electric light, the telephone, the microchip. All great inventions. But for me, the most important of all was the wheel, mainly because it led to things like this. Downhill cycling. Why use two wheels when one makes you look twice as cool? But before…
New Crew, Same Pissah | Wicked Tuna
Chum and they will come with Lance. Brad and I, we are gonna catch a ton of tuna fish this year. Drop you like a bad habit. I’ve known Paul for about two and a half years. He’s a great guy; he’s a great fisherman. The reason why I’m fishing is to provide …
Where Is The Economy Going After The Pandemic? | Morning Joe
What is going on with the economy as prices seem to be going up everywhere? And you also just can’t seem to order anything. Things aren’t there. Yes, we have disruption to the supply chain, not just domestically but globally. But the reason that there is…
2015 AP Calculus AB/BC 1d | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Part D. The pipe can hold 50 cubic feet of water before overflowing. For T greater than 8, water continues to flow into and out of the pipe at the given rates until the pipe begins to overflow. Right, but do not solve an equation involving one or more int…
The Mystery of Queen Nefertiti | Lost Treasures of Egypt
[music playing] NARRATOR: Nestling on the east bank of the Nile, Nefertiti’s capital city covered over 3,000 acres, and was home to up to 50,000 people. What is now barren landscape was once one of the greatest cities in the ancient world. And from these…