yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing related rates problems: equations (Pythagoras) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Two cars are driving towards an intersection from perpendicular directions. The first car's velocity is 50 kilometers per hour, and the second car's velocity is 90 kilometers per hour. At a certain instant ( t_0 ), the first car is a distance ( X_{t_0} ) of half a kilometer from the intersection, and the second car is a distance ( Y_{t_0} ) of 1.2 kilometers from the intersection. What is the rate of change of the distance ( D(t) ) between the cars at that instant?

So at ( t_0 ), which equation should be used to solve the problem? They give us a choice of four equations right over here. So you could pause the video and try to work through it on your own, but I'm about to do it as well. So let's just draw what's going on; that's always a healthy thing to do.

Two cars are driving towards an intersection from perpendicular directions. So let's say that this is one car right over here, and it is moving in the direct x direction towards that intersection, which is right over there. And then you have another car that is moving in the y direction. So let's say it's moving like this.

So this is the other car. I should have maybe done a top view. Well, here we go. This square represents the car, and it is moving in that direction. Now they say at a certain instant ( t_0 ), so let's draw that instant. The first car is a distance ( X_{t_0} ) of 0.5 kilometers, so this distance right over here, let's just call this ( X(t) ), and let's call this distance right over here ( Y(t) ).

Now, how does the distance between the cars relate to ( X(t) ) and ( Y(t) )? Well, we could just use the distance formula, which is essentially just the Pythagorean theorem, to say, well, the distance between the cars would be the hypotenuse of this right triangle. Remember, they're traveling from perpendicular directions, so that's a right triangle there.

So this distance right over here would be ( X(t)^2 + Y(t)^2 ) and the square root of that. And that's just the Pythagorean theorem right over here. This would be ( D(t) ), or we could say that ( D(t)^2 ) is equal to ( X(t)^2 + Y(t)^2 ).

So that's the relationship between ( D(t) ), ( X(t) ), and ( Y(t) ), and it's useful for solving this problem because now we could take the derivative of both sides of this equation with respect to ( t ). We’d be using various derivative rules, including the chain rule, in order to do it. This would give us a relationship between the rate of change of ( D(t) ), which would be ( D'(t) ), and the rate of change of ( X(t) ), ( Y(t) ), and ( X(t) ), and ( Y(t) ) themselves.

So if we look at these choices right over here, we indeed see that ( D ) sets up that exact same relationship that we just did ourselves. It shows that the distance squared between the cars is equal to that ( x ) distance from the intersection squared plus the ( y ) distance from the intersection squared. Then we can take the derivative of both sides to actually figure out this related rates question.

More Articles

View All
HOW ROCKETS ARE MADE (Rocket Factory Tour - United Launch Alliance) - Smarter Every Day 231
Five… Four…. Three… Two… One… Hey, it’s me Destin, welcome back to Smarter Every Day! I love rockets. If you’ve been around this channel, you know that about me, and today is like the best day ever because we’re going to learn how to build rockets. Just d…
Drugs for a Fine (Clip) | To Catch a Smuggler | National Geographic
You said this was what, again? Okay, just give me a second to positive for ketamine hydrochloride, which is a DEA controlled substance. It’s illegal to transport into the U.S. It’s illegal to have in the U.S. without a prescription. I honestly didn’t kno…
The 5 Financial Goals To Achieve In Your 20s
What’s up you guys, it’s Graham here. So, I have no idea how to start this video other than to say that I went down a bit of a rabbit hole the other day. You know, like when you come across something online and then for some reason, you open up another ta…
Peter Lynch: Everything You Need to Know About Investing in One Video
So I’ve always said if you spend 13 minutes a year on economics, you’ve wasted 10 minutes, and all you need to know about the stock market is it goes up, and it goes down, and it goes down a lot. And that’s all you need to know. Again, it’d be terrific to…
6.5 Ways To Invest $10,000 ASAP
What’s up Grandma? It’s guys here. So I recently found out that the African-American household has nearly ten thousand dollars saved in their bank account, and that gave me an idea: we should go over the six and a half best ways that you could invest ten …
Examples thinking about multiplying even and odd numbers
We are told Liam multiplies two numbers and gets an even product. What could be true about the numbers Liam multiplied? It says choose two answers, so pause this video and see if you can figure out which two of these could be true. All right, now let’s d…