yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing related rates problems: equations (Pythagoras) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Two cars are driving towards an intersection from perpendicular directions. The first car's velocity is 50 kilometers per hour, and the second car's velocity is 90 kilometers per hour. At a certain instant ( t_0 ), the first car is a distance ( X_{t_0} ) of half a kilometer from the intersection, and the second car is a distance ( Y_{t_0} ) of 1.2 kilometers from the intersection. What is the rate of change of the distance ( D(t) ) between the cars at that instant?

So at ( t_0 ), which equation should be used to solve the problem? They give us a choice of four equations right over here. So you could pause the video and try to work through it on your own, but I'm about to do it as well. So let's just draw what's going on; that's always a healthy thing to do.

Two cars are driving towards an intersection from perpendicular directions. So let's say that this is one car right over here, and it is moving in the direct x direction towards that intersection, which is right over there. And then you have another car that is moving in the y direction. So let's say it's moving like this.

So this is the other car. I should have maybe done a top view. Well, here we go. This square represents the car, and it is moving in that direction. Now they say at a certain instant ( t_0 ), so let's draw that instant. The first car is a distance ( X_{t_0} ) of 0.5 kilometers, so this distance right over here, let's just call this ( X(t) ), and let's call this distance right over here ( Y(t) ).

Now, how does the distance between the cars relate to ( X(t) ) and ( Y(t) )? Well, we could just use the distance formula, which is essentially just the Pythagorean theorem, to say, well, the distance between the cars would be the hypotenuse of this right triangle. Remember, they're traveling from perpendicular directions, so that's a right triangle there.

So this distance right over here would be ( X(t)^2 + Y(t)^2 ) and the square root of that. And that's just the Pythagorean theorem right over here. This would be ( D(t) ), or we could say that ( D(t)^2 ) is equal to ( X(t)^2 + Y(t)^2 ).

So that's the relationship between ( D(t) ), ( X(t) ), and ( Y(t) ), and it's useful for solving this problem because now we could take the derivative of both sides of this equation with respect to ( t ). We’d be using various derivative rules, including the chain rule, in order to do it. This would give us a relationship between the rate of change of ( D(t) ), which would be ( D'(t) ), and the rate of change of ( X(t) ), ( Y(t) ), and ( X(t) ), and ( Y(t) ) themselves.

So if we look at these choices right over here, we indeed see that ( D ) sets up that exact same relationship that we just did ourselves. It shows that the distance squared between the cars is equal to that ( x ) distance from the intersection squared plus the ( y ) distance from the intersection squared. Then we can take the derivative of both sides to actually figure out this related rates question.

More Articles

View All
9 Passive Income Ideas-How I make $7500/Week
In this video, I’m going to write 9 passive income ideas based on how hard it is to get started and how hard it is to maintain and make money from it. These days, I’ve been averaging around 30k to 40k USD monthly, and by the end of the year, we’re expecti…
A Discussion With Sal About Systemic Racism
Hi everyone, uh, Sal Khan here from Khan Academy. Welcome to our daily live stream. Uh, for those of y’all who are wondering what this is, you know, this is something we started several months ago as a way to keep us all connected during times of social d…
Lucy in the Sky with Asteroids | Podcast | Overheard at National Geographic
What sparked my interest in space was just dreaming about the stars. This is Adriana Ocampo, she’s a NASA scientist, and back when she was a kid in Argentina, she’d grab her dog and head to the roof of her house. You know, we would go every evening that w…
Length word problem example
We’re told that Pilar has 85 inches of ribbon. She gives her friend Nico 19 inches of ribbon. How much ribbon does Pilar have left? Pause this video and see if you can figure that out. All right, now let’s do it together. So Pilar is starting with 85 inc…
How Temu Used the Super Bowl to Take Over America
In 1984, something unexpected came across people’s TV screens as they watched the Super Bowl: droves of brainwashed people march through an apocalyptic world. Some might have recognized it for being reminiscent of George Orwell’s popular novel “1984.” Tal…
Why Humans Are Vanishing
Every two years, one million Japanese disappear. China’s population will halve by the end of the century; the median age in Italy has reached 48. All around the world, birth rates are crashing. Is humanity dying out? What is going on and how bad is it? F…