yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing related rates problems: equations (Pythagoras) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Two cars are driving towards an intersection from perpendicular directions. The first car's velocity is 50 kilometers per hour, and the second car's velocity is 90 kilometers per hour. At a certain instant ( t_0 ), the first car is a distance ( X_{t_0} ) of half a kilometer from the intersection, and the second car is a distance ( Y_{t_0} ) of 1.2 kilometers from the intersection. What is the rate of change of the distance ( D(t) ) between the cars at that instant?

So at ( t_0 ), which equation should be used to solve the problem? They give us a choice of four equations right over here. So you could pause the video and try to work through it on your own, but I'm about to do it as well. So let's just draw what's going on; that's always a healthy thing to do.

Two cars are driving towards an intersection from perpendicular directions. So let's say that this is one car right over here, and it is moving in the direct x direction towards that intersection, which is right over there. And then you have another car that is moving in the y direction. So let's say it's moving like this.

So this is the other car. I should have maybe done a top view. Well, here we go. This square represents the car, and it is moving in that direction. Now they say at a certain instant ( t_0 ), so let's draw that instant. The first car is a distance ( X_{t_0} ) of 0.5 kilometers, so this distance right over here, let's just call this ( X(t) ), and let's call this distance right over here ( Y(t) ).

Now, how does the distance between the cars relate to ( X(t) ) and ( Y(t) )? Well, we could just use the distance formula, which is essentially just the Pythagorean theorem, to say, well, the distance between the cars would be the hypotenuse of this right triangle. Remember, they're traveling from perpendicular directions, so that's a right triangle there.

So this distance right over here would be ( X(t)^2 + Y(t)^2 ) and the square root of that. And that's just the Pythagorean theorem right over here. This would be ( D(t) ), or we could say that ( D(t)^2 ) is equal to ( X(t)^2 + Y(t)^2 ).

So that's the relationship between ( D(t) ), ( X(t) ), and ( Y(t) ), and it's useful for solving this problem because now we could take the derivative of both sides of this equation with respect to ( t ). We’d be using various derivative rules, including the chain rule, in order to do it. This would give us a relationship between the rate of change of ( D(t) ), which would be ( D'(t) ), and the rate of change of ( X(t) ), ( Y(t) ), and ( X(t) ), and ( Y(t) ) themselves.

So if we look at these choices right over here, we indeed see that ( D ) sets up that exact same relationship that we just did ourselves. It shows that the distance squared between the cars is equal to that ( x ) distance from the intersection squared plus the ( y ) distance from the intersection squared. Then we can take the derivative of both sides to actually figure out this related rates question.

More Articles

View All
Zero-order reactions | Kinetics | AP Chemistry | Khan Academy
Let’s say we have a hypothetical reaction where reactant A turns into products. Let’s say the reaction is zero order with respect to A. If it’s zero order with respect to A, we can write that the rate of the reaction is equal to the rate constant k times …
American Empire
The United States is, shockingly, a bunch of states that are united. It was just 13 to start with, but as time marched on, the border marked west, bringing us to today and the 48 contiguous states plus Alaska and Hawaii. They’re usually drawn in these lit…
Marcus Aurelius - Overcome Your Inner Coward
During his reign as the emperor of Rome, Marcus Aurelius faced immense uncertainties that would strike fear into the hearts of most people, such as times of war, plague, internal conspiracies, the death of some of his children, and the death of his wife, …
Groundhog Day Explained
February is home to one of the most important holidays of the year not to forget: Groundhog Day. If you live outside of Can-merica, then you might not know what a groundhog is, so… here you go: this is a groundhog. They’re basically giant grumpy squirrels…
Divergence formula, part 2
Hello again. In the last video, we were looking at vector fields that only have an X component, basically meaning all of the vectors point just purely to the left or to the right, with nothing up and down going on. We landed at the idea that the divergenc…
The Desire to Not Exist
Sleep is good; death is better. Yet surely never to have been born is best. These lines close a 17th-century poem by German writer Hinrich Hine. The piece is titled “Death and His Brother’s Sleep.” It compares these two states, suggesting that we experien…