yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing related rates problems: equations (Pythagoras) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Two cars are driving towards an intersection from perpendicular directions. The first car's velocity is 50 kilometers per hour, and the second car's velocity is 90 kilometers per hour. At a certain instant ( t_0 ), the first car is a distance ( X_{t_0} ) of half a kilometer from the intersection, and the second car is a distance ( Y_{t_0} ) of 1.2 kilometers from the intersection. What is the rate of change of the distance ( D(t) ) between the cars at that instant?

So at ( t_0 ), which equation should be used to solve the problem? They give us a choice of four equations right over here. So you could pause the video and try to work through it on your own, but I'm about to do it as well. So let's just draw what's going on; that's always a healthy thing to do.

Two cars are driving towards an intersection from perpendicular directions. So let's say that this is one car right over here, and it is moving in the direct x direction towards that intersection, which is right over there. And then you have another car that is moving in the y direction. So let's say it's moving like this.

So this is the other car. I should have maybe done a top view. Well, here we go. This square represents the car, and it is moving in that direction. Now they say at a certain instant ( t_0 ), so let's draw that instant. The first car is a distance ( X_{t_0} ) of 0.5 kilometers, so this distance right over here, let's just call this ( X(t) ), and let's call this distance right over here ( Y(t) ).

Now, how does the distance between the cars relate to ( X(t) ) and ( Y(t) )? Well, we could just use the distance formula, which is essentially just the Pythagorean theorem, to say, well, the distance between the cars would be the hypotenuse of this right triangle. Remember, they're traveling from perpendicular directions, so that's a right triangle there.

So this distance right over here would be ( X(t)^2 + Y(t)^2 ) and the square root of that. And that's just the Pythagorean theorem right over here. This would be ( D(t) ), or we could say that ( D(t)^2 ) is equal to ( X(t)^2 + Y(t)^2 ).

So that's the relationship between ( D(t) ), ( X(t) ), and ( Y(t) ), and it's useful for solving this problem because now we could take the derivative of both sides of this equation with respect to ( t ). We’d be using various derivative rules, including the chain rule, in order to do it. This would give us a relationship between the rate of change of ( D(t) ), which would be ( D'(t) ), and the rate of change of ( X(t) ), ( Y(t) ), and ( X(t) ), and ( Y(t) ) themselves.

So if we look at these choices right over here, we indeed see that ( D ) sets up that exact same relationship that we just did ourselves. It shows that the distance squared between the cars is equal to that ( x ) distance from the intersection squared plus the ( y ) distance from the intersection squared. Then we can take the derivative of both sides to actually figure out this related rates question.

More Articles

View All
Amazon Stock Split?
Today I’m gonna do something different and talk about when Amazon might split their stock with respect to what happened at Google. Now let me first mention that I called the Tesla split last year, and I will reveal my positions for Amazon later. Now, som…
Interpreting trigonometric graphs in context | Trigonometry | Algebra || | Khan Academy
We’re told Alexa is riding on a Ferris wheel. Her height above the ground in meters is modeled by ( h(t) ), where ( t ) is the time in seconds, and we can see that right over here. Now, what I want to focus on in this video is some features of this graph.…
Catch of the Week - Reels of Misfortune | Wicked Tuna: Outer Banks
[Applause] [Music] [Applause] There’s a little mark there. A couple fish tuners. We’re marking now. Could be exactly what we need to overcome the reels of fortune and get me home to my baby. Come on fish, bite that thing! Come on, bite it! There he is! T…
Background of the Carthaginians | World History | Khan Academy
Gustin’s previous videos discuss how Rome became a republic in 509 BCE, but it’s worth noting—and I’ve done this in other videos—that at that point, Rome was not this vast empire; it was really just in control of Rome itself. But over the next few hundred…
Journeying With Bats Across Mexico | Perpetual Planet: Mexico
I just learned how to hold a bat correctly. This is what they do to learn more about the different species that live in this region. They’re nervous. We’re told to not hold them for very long. It’s easy to forget that the nocturnal world is teeming with w…
Exponents of decimals
What we’re going to do in this video is get some practice evaluating exponents of decimals. So let’s say that I have 0.2 to the third power. Pause this video, see if you can figure out what that is going to be. Well, this would just mean if I take somet…