yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing related rates problems: equations (Pythagoras) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Two cars are driving towards an intersection from perpendicular directions. The first car's velocity is 50 kilometers per hour, and the second car's velocity is 90 kilometers per hour. At a certain instant ( t_0 ), the first car is a distance ( X_{t_0} ) of half a kilometer from the intersection, and the second car is a distance ( Y_{t_0} ) of 1.2 kilometers from the intersection. What is the rate of change of the distance ( D(t) ) between the cars at that instant?

So at ( t_0 ), which equation should be used to solve the problem? They give us a choice of four equations right over here. So you could pause the video and try to work through it on your own, but I'm about to do it as well. So let's just draw what's going on; that's always a healthy thing to do.

Two cars are driving towards an intersection from perpendicular directions. So let's say that this is one car right over here, and it is moving in the direct x direction towards that intersection, which is right over there. And then you have another car that is moving in the y direction. So let's say it's moving like this.

So this is the other car. I should have maybe done a top view. Well, here we go. This square represents the car, and it is moving in that direction. Now they say at a certain instant ( t_0 ), so let's draw that instant. The first car is a distance ( X_{t_0} ) of 0.5 kilometers, so this distance right over here, let's just call this ( X(t) ), and let's call this distance right over here ( Y(t) ).

Now, how does the distance between the cars relate to ( X(t) ) and ( Y(t) )? Well, we could just use the distance formula, which is essentially just the Pythagorean theorem, to say, well, the distance between the cars would be the hypotenuse of this right triangle. Remember, they're traveling from perpendicular directions, so that's a right triangle there.

So this distance right over here would be ( X(t)^2 + Y(t)^2 ) and the square root of that. And that's just the Pythagorean theorem right over here. This would be ( D(t) ), or we could say that ( D(t)^2 ) is equal to ( X(t)^2 + Y(t)^2 ).

So that's the relationship between ( D(t) ), ( X(t) ), and ( Y(t) ), and it's useful for solving this problem because now we could take the derivative of both sides of this equation with respect to ( t ). We’d be using various derivative rules, including the chain rule, in order to do it. This would give us a relationship between the rate of change of ( D(t) ), which would be ( D'(t) ), and the rate of change of ( X(t) ), ( Y(t) ), and ( X(t) ), and ( Y(t) ) themselves.

So if we look at these choices right over here, we indeed see that ( D ) sets up that exact same relationship that we just did ourselves. It shows that the distance squared between the cars is equal to that ( x ) distance from the intersection squared plus the ( y ) distance from the intersection squared. Then we can take the derivative of both sides to actually figure out this related rates question.

More Articles

View All
Could Sport Fishing Cause Shark Attacks? | When Sharks Attack: Tropical Terror
If tiger sharks are showing up in the shallows in greater numbers, then it’s not because of deep blue. The reason for the attacks remains elusive, but while scouring the ocean for an explanation, experts come across something else that also ensnares large…
Identifying value in digits
So I’m going to write down a number, and I’m going to think about how much do each of these digits of the number—what value do they represent? And actually, let me pick on this 2 here. What does that 2 represent? Does it just represent two, or does it rep…
7 things that (quickly) cured my procrastination
Today we’re gonna talk about a bunch of methods that I use to stop procrastinating. These are methods that I’ve developed over the past couple of years, and also methods that I’ve heavily borrowed from other people, completely ripping them off, and now I’…
How to Make a Delicious Meal For Under $10 | Chef Wonderful
Who made this? Oh, I did! Wow, I’m gonna cry. It’s a masterpiece that should get an Emmy, that should get a Tony, all of it. And that still wouldn’t be enough for what that was. [Music] [Applause] [Music] Chef Wonderful here! Let’s talk about suffolak…
Is the S&P 500 Just a Giant Bubble?
You know that saying in investment ads: past performance is not a reliable indicator of future returns. It’s an interesting one and it got me thinking, because for passive investors that are literally buying the whole market, the very thesis of that strat…
Why Is Your BOTTOM in the MIDDLE?
Hey, Vsauce. Michael here. A human, running like a quadruped, is creepy. Artist Rui Martins created this animation about a year ago. 127 years ago, Eadweard Muybridge shot these real images of a child with infantile paralysis walking on all fours. Walking…