yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing related rates problems: equations (Pythagoras) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Two cars are driving towards an intersection from perpendicular directions. The first car's velocity is 50 kilometers per hour, and the second car's velocity is 90 kilometers per hour. At a certain instant ( t_0 ), the first car is a distance ( X_{t_0} ) of half a kilometer from the intersection, and the second car is a distance ( Y_{t_0} ) of 1.2 kilometers from the intersection. What is the rate of change of the distance ( D(t) ) between the cars at that instant?

So at ( t_0 ), which equation should be used to solve the problem? They give us a choice of four equations right over here. So you could pause the video and try to work through it on your own, but I'm about to do it as well. So let's just draw what's going on; that's always a healthy thing to do.

Two cars are driving towards an intersection from perpendicular directions. So let's say that this is one car right over here, and it is moving in the direct x direction towards that intersection, which is right over there. And then you have another car that is moving in the y direction. So let's say it's moving like this.

So this is the other car. I should have maybe done a top view. Well, here we go. This square represents the car, and it is moving in that direction. Now they say at a certain instant ( t_0 ), so let's draw that instant. The first car is a distance ( X_{t_0} ) of 0.5 kilometers, so this distance right over here, let's just call this ( X(t) ), and let's call this distance right over here ( Y(t) ).

Now, how does the distance between the cars relate to ( X(t) ) and ( Y(t) )? Well, we could just use the distance formula, which is essentially just the Pythagorean theorem, to say, well, the distance between the cars would be the hypotenuse of this right triangle. Remember, they're traveling from perpendicular directions, so that's a right triangle there.

So this distance right over here would be ( X(t)^2 + Y(t)^2 ) and the square root of that. And that's just the Pythagorean theorem right over here. This would be ( D(t) ), or we could say that ( D(t)^2 ) is equal to ( X(t)^2 + Y(t)^2 ).

So that's the relationship between ( D(t) ), ( X(t) ), and ( Y(t) ), and it's useful for solving this problem because now we could take the derivative of both sides of this equation with respect to ( t ). We’d be using various derivative rules, including the chain rule, in order to do it. This would give us a relationship between the rate of change of ( D(t) ), which would be ( D'(t) ), and the rate of change of ( X(t) ), ( Y(t) ), and ( X(t) ), and ( Y(t) ) themselves.

So if we look at these choices right over here, we indeed see that ( D ) sets up that exact same relationship that we just did ourselves. It shows that the distance squared between the cars is equal to that ( x ) distance from the intersection squared plus the ( y ) distance from the intersection squared. Then we can take the derivative of both sides to actually figure out this related rates question.

More Articles

View All
living alone🌞 | a productive day in my life ☕️📚🖋
[Applause] [Music] Good morning, my love! How you guys are doing? I’m doing awesome! If you watch my other vlogs, you probably know that I love eating. So for today’s breakfast, I was thinking about French toast. Let’s make it! So, I found a recipe for F…
Emotional Manipulation: A Masked Reality
Manipulation is everywhere. The social influence aimed at changing the behavior or belief of a person through emotional coercion. Emotional manipulation has always been prevalent in human interaction. It’s in all of our relationships. Companies use it on …
Renewable and Nonrenewable Energy Resources | AP Environmental Science | Khan Academy
Today, let’s talk about energy resources. You’ve probably already done something today that used energy resources, even beginning from the moment you woke up. For me, the beginning of my day always starts with making tea. I use energy in every step of thi…
Science Fair – Trailer | National Geographic
The winner in the category of Medicine, making it ties—that’s like the big thing. You kind of had that status of being in, like, the group I would say that a lot of people are jealous of. On deadlines, I’m awful. I wait until the deadline to start workin…
Saving the Florida Wildlife Corridor | National Geographic
[Music] Florida is like no other place on earth. It’s the land, it’s the water, it’s the people. And the Florida wildlife corridor is the backbone that connects it all. But we are seeing changes because of those thousand people a day that are moving to Fl…
A Traveling Circus and its Great Escape | Podcast | Overheard at National Geographic
So, as I was driving around, I just noticed the big red and yellow big top in the distance, in the middle of essentially a paralyzed, frozen entire city. When I saw it, I thought to myself, “Well, I wonder what they’re doing?” That’s photographer Tomas S…