yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing related rates problems: equations (Pythagoras) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Two cars are driving towards an intersection from perpendicular directions. The first car's velocity is 50 kilometers per hour, and the second car's velocity is 90 kilometers per hour. At a certain instant ( t_0 ), the first car is a distance ( X_{t_0} ) of half a kilometer from the intersection, and the second car is a distance ( Y_{t_0} ) of 1.2 kilometers from the intersection. What is the rate of change of the distance ( D(t) ) between the cars at that instant?

So at ( t_0 ), which equation should be used to solve the problem? They give us a choice of four equations right over here. So you could pause the video and try to work through it on your own, but I'm about to do it as well. So let's just draw what's going on; that's always a healthy thing to do.

Two cars are driving towards an intersection from perpendicular directions. So let's say that this is one car right over here, and it is moving in the direct x direction towards that intersection, which is right over there. And then you have another car that is moving in the y direction. So let's say it's moving like this.

So this is the other car. I should have maybe done a top view. Well, here we go. This square represents the car, and it is moving in that direction. Now they say at a certain instant ( t_0 ), so let's draw that instant. The first car is a distance ( X_{t_0} ) of 0.5 kilometers, so this distance right over here, let's just call this ( X(t) ), and let's call this distance right over here ( Y(t) ).

Now, how does the distance between the cars relate to ( X(t) ) and ( Y(t) )? Well, we could just use the distance formula, which is essentially just the Pythagorean theorem, to say, well, the distance between the cars would be the hypotenuse of this right triangle. Remember, they're traveling from perpendicular directions, so that's a right triangle there.

So this distance right over here would be ( X(t)^2 + Y(t)^2 ) and the square root of that. And that's just the Pythagorean theorem right over here. This would be ( D(t) ), or we could say that ( D(t)^2 ) is equal to ( X(t)^2 + Y(t)^2 ).

So that's the relationship between ( D(t) ), ( X(t) ), and ( Y(t) ), and it's useful for solving this problem because now we could take the derivative of both sides of this equation with respect to ( t ). We’d be using various derivative rules, including the chain rule, in order to do it. This would give us a relationship between the rate of change of ( D(t) ), which would be ( D'(t) ), and the rate of change of ( X(t) ), ( Y(t) ), and ( X(t) ), and ( Y(t) ) themselves.

So if we look at these choices right over here, we indeed see that ( D ) sets up that exact same relationship that we just did ourselves. It shows that the distance squared between the cars is equal to that ( x ) distance from the intersection squared plus the ( y ) distance from the intersection squared. Then we can take the derivative of both sides to actually figure out this related rates question.

More Articles

View All
Will OpenAI Kill All Startups?
This is Michael Seibel with Dalton Caldwell, and today we’re going to talk about how OpenAI is going to kill all startups. This is our last video; might as well pack it in, we’re done. OpenAI is going to do this. They’re going to make the videos—next vide…
Lattice energy | Molecular and ionic compound structure and properties | AP Chemistry | Khan Academy
You may already be familiar with Coulomb’s law, which is really the most important or underlying law behind all of what we know about electrostatics and how things with charge attract or repulse each other. But a simplified version of Coulomb’s law is ju…
12 STOIC SECRETS FOR DOING YOUR BEST | STOICISM INSIGHTS
Imagine going through your entire life believing that every single setback, every challenge, was actually setting you up for something greater. Now, I know that might sound like just another inspirational quote you scroll past on your social media feed, b…
Scaling functions vertically: examples | Transformations of functions | Algebra 2 | Khan Academy
So we’re told this is the graph of function f right over here, and then they tell us that function g is defined as g of x is equal to one third f of x. What is the graph of g? If we were doing this on Khan Academy, this is a screenshot from our mobile app…
Funding Is an Outcome of Building a Good Business - Porter Braswell of Jopwell
Maybe the best place to start would be, let’s explain what job well is, and then we can kind of go back in time and get to where we are now. Cool, cool. So also thanks for coming in. Absolutely my pleasure, thank you for having me. Appreciate it. Yeah, s…
What If You Just Keep Digging?
If you’ve ever thought, “What if I just dug a really, really deep hole?”, that’s what the USSR did right here! That hole is deeper than the deepest part of the ocean. It’s deeper than Mount Everest is tall. They started digging it in the 1970s as part of …