yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing related rates problems: equations (Pythagoras) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Two cars are driving towards an intersection from perpendicular directions. The first car's velocity is 50 kilometers per hour, and the second car's velocity is 90 kilometers per hour. At a certain instant ( t_0 ), the first car is a distance ( X_{t_0} ) of half a kilometer from the intersection, and the second car is a distance ( Y_{t_0} ) of 1.2 kilometers from the intersection. What is the rate of change of the distance ( D(t) ) between the cars at that instant?

So at ( t_0 ), which equation should be used to solve the problem? They give us a choice of four equations right over here. So you could pause the video and try to work through it on your own, but I'm about to do it as well. So let's just draw what's going on; that's always a healthy thing to do.

Two cars are driving towards an intersection from perpendicular directions. So let's say that this is one car right over here, and it is moving in the direct x direction towards that intersection, which is right over there. And then you have another car that is moving in the y direction. So let's say it's moving like this.

So this is the other car. I should have maybe done a top view. Well, here we go. This square represents the car, and it is moving in that direction. Now they say at a certain instant ( t_0 ), so let's draw that instant. The first car is a distance ( X_{t_0} ) of 0.5 kilometers, so this distance right over here, let's just call this ( X(t) ), and let's call this distance right over here ( Y(t) ).

Now, how does the distance between the cars relate to ( X(t) ) and ( Y(t) )? Well, we could just use the distance formula, which is essentially just the Pythagorean theorem, to say, well, the distance between the cars would be the hypotenuse of this right triangle. Remember, they're traveling from perpendicular directions, so that's a right triangle there.

So this distance right over here would be ( X(t)^2 + Y(t)^2 ) and the square root of that. And that's just the Pythagorean theorem right over here. This would be ( D(t) ), or we could say that ( D(t)^2 ) is equal to ( X(t)^2 + Y(t)^2 ).

So that's the relationship between ( D(t) ), ( X(t) ), and ( Y(t) ), and it's useful for solving this problem because now we could take the derivative of both sides of this equation with respect to ( t ). We’d be using various derivative rules, including the chain rule, in order to do it. This would give us a relationship between the rate of change of ( D(t) ), which would be ( D'(t) ), and the rate of change of ( X(t) ), ( Y(t) ), and ( X(t) ), and ( Y(t) ) themselves.

So if we look at these choices right over here, we indeed see that ( D ) sets up that exact same relationship that we just did ourselves. It shows that the distance squared between the cars is equal to that ( x ) distance from the intersection squared plus the ( y ) distance from the intersection squared. Then we can take the derivative of both sides to actually figure out this related rates question.

More Articles

View All
Envy Can Be Useful, or It Can Eat You Alive
Do you want to tell us about some of the jobs that you had as a youth and the specific job that kicked off your fanatical obsession with creating wealth? This gets a little personal, and I don’t want to do the humble brag thing. There was some thread goin…
The Moon Landing | Generation X
5 4 3 2 all engine running lift off. We have a liftoff. 32 minutes past the hour, liftoff on Apollo 11 and our young dreams liftoff with it. Mankind is going to the moon and technology is paving the way. A new horizon is in our future and for Generation X…
Resonance | Molecular and ionic compound structure and properties | AP Chemistry | Khan Academy
Let’s see if we can draw the Lewis diagram for a nitrate anion. So, a nitrate anion has one nitrogen and three oxygens, and it has a negative charge. I’ll do that in another color; it has a negative charge. So, pause this video and see if you can draw th…
Delta IV Heavy Pad Tour, (with CEO Tory Bruno) - Smarter Every Day 199
Hey, it’s me Destin, welcome back to Smarter Every Day. This is a really big day because I live in a hometown where there’s a gigantic rocket plant owned by United Launch Alliance. They make a vehicle called the Delta IV Heavy right over there. It’s about…
THIS IS THE STOIC SECRET FOR EVERYTHING YOU DESIRE TO HAPPEN | STOICISM
[Music] Have you ever dreamed of a world where all the things you want come true? A place where your goals, your dreams, and your aspirations are not just possibilities but palpable realities? Well, you are in the right place! Today we are going to talk …
Dangerous Mission | No Man Left Behind
It was an enormous honor to be chosen as a stealth fighter pilot. It was considered a special duty, black world. I felt extremely comfortable in that environment; absolutely loved it. I felt like this is where I belong. There were eight of us that night,…