yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Misconceptions About Heat


4m read
·Nov 10, 2024

Today I'm going to bake this chocolate cake. Now those of you who know me know that the only reason I would do this is to prove a point. Earlier I was asking people to compare the temperatures of these two objects: a science book written by Isaac Asimov and an old metal hard drive. Can you compare their temperatures? This one would be— that feels cold. Cold. And— it's room temperature. Can you tell? You would say colder than that one? Yeah. What makes something hot or colder? What affects that? The actual material. I mean, paper is warm and metal is cold. Both of these objects have been sitting here on the ground for quite a while, so one might expect that they're at the same temperature. No, because this is metal and that's paper. But what if I left that outside all day? Would it be 15°? No, because paper doesn't absorb cold. Doesn't absorb cold? No. Well, I've left books out— not all day, um, outdoors— and I can't say that I've noticed the book was cold when I've come to pick it up ever.

What if I told you that these two objects are actually the same temperature? What would you say? Definitely not. If it's— take a temperature right now, this is colder. So let's say you're taking a cake out of the oven. Yeah? Would you be worried about touching the cake? Yes. Well, not the cake itself but the actual tin around the cake. It'll be hot. Yeah, but how does the temperature of the tin compare to the temperature of the cake? Well, the cake will be warm— like hot— but not as hot as the tin. The tin's hotter because it's metal. Metal holds the heat longer and holds the cold longer. Like if you think the tin would be the same temperature as the cake, well you would think if it's been like in 200° C, it would probably be the same. But it somehow— it just doesn't feel like it will burn with metal, whereas my fingers will burn. But I mean, not if I stick my finger in the cake it wouldn't burn as much.

All right, it's time to take the cake out and find out if it's the same temperature as the tin. I have a meat thermometer with which to measure the temperature of the cake. I'm not sure that's the most accurate way of doing it, but well, it's the only thing I've got, so let's give it a shot. So I tried to measure the temperature of the cake using a meat thermometer, but unfortunately its temperature scale doesn't go high enough to allow me to accurately measure the temperature of the cake. You can actually hear the moment when I realized that my experiment wasn't going to work. Uhoh. So now I'm back in Vancouver and I thought I'd bring in the big guns to help me sort out this experiment, and by the big guns of course mean, uh, my mom.

So Derek, I understand we're going to make this vanilla cake mix together and see what happens. We've got a secret weapon, which is, uh, this infrared thermometer which can measure temperatures up to 300° C. So we should have no problems with it. We just point it at a surface and it gives us a readout of the temperature of that surface. So this should be perfect for measuring the temperature of the cake and the tin. Do you want to make a prediction about the relative temperature of the cake and the tin when we bring it out of the oven? Well, I really suspect that the tin is going to be a lot hotter than the cake. You can really not handle the tin at all, so I reckon that's what's going to happen.

Okay, well, I think they're both going to be the same temperature, but I could be wrong, so we're going to have to do the experiment and find out. All right, let's get mixing. Okay, so it's been about a half an hour, and the cake is cooked. It's ready to come out. Yeah, we're all ready to go. That is your expert opinion as the Master Baker here? Yes, I think so. Okay, we're going to take the cake out of the oven and we're going to check the temperature of the tin and the cake. Let's do it.

Okay, o, it looks like a good cake. Yeah, not a bad one. Okay, so let's measure the temperature of the cake. We have 108.9, and the temperature of the tin— 118.6 but dropping— 108.1. So we have— what would you say about the temperature of the cake and the tin? Pretty close. Much closer than I expected. Hm, they’re quite similar. They're both around 110 °C. That's my point, is that the tin and the cake are the same temperature, but the tin is going to conduct heat to your hand much faster than the cake. So the tin would burn you, but the cake would not. But they're the same temperature.

What if I were to impress upon you that they are in fact the same temperature? I'll take your word for it. And— and that in fact, these two are the same temperature? No, I don't agree with that. No? You don't think those are the same temperature? No, really, I just can't believe this book is 15 degrees. It just doesn't feel it. I just believe it. In truth, there's no difference in the temperature between these two objects if they've been in the same surroundings for a long period of time. They come to thermal equilibrium with their surroundings, which means they're both at the same temperature. But the metal feels colder because it's able to conduct heat away from my hand faster than the book. So just because an object feels colder, that doesn't mean that it actually has a lower temperature. It may just mean that it's conducting heat away from your hand faster.

What's interesting is— it weird— just learn something.

More Articles

View All
The Strange—but Necessary—Task of Vaccinating Wild Seals | National Geographic
You’re walking around with a sharp needle on the end of a stick, and you’re walking around rocks and tide pools and some terrain that could be tricky. Then, you’re approaching a 400-plus-pound animal, an endangered species, and you’re going to try to, you…
Ecosystems and biomes | Ecology and natural systems | High school biology | Khan Academy
So just as a bit of a review, if we take the members of a certain species that share the same area, we call that a population. Population, all of the organisms in this particular population will be members of the same species. There could be other member…
Introduction to the chi-square test for homogeneity | AP Statistics | Khan Academy
We’ve already been introduced to the chi-squared statistic in other videos. Now, we’re going to use it for a test for homogeneity. In everyday language, this means how similar things are, and that’s what we’re essentially going to test here. We’re going …
I Spent 72 Hours in Bhutan with National Geographic | Juanpa Zurita | Nat Geo’s Best of the World
I am currently standing on the longest suspension bridge of all Bhutan. I’m about to take you on a journey way up near some of the tallest mountains in the entire world. This country’s tiny, but mighty. And it’s in the Himalayas between Tibet and Nepal. T…
Reasoning with systems of equations | Equivalent systems of equations | Algebra I | Khan Academy
So let’s say I had the equation (2x + y = 8). This is a single equation with two unknowns, and there are many different (xy) pairs that would satisfy this equation. Now let’s add a second equation: (x + y = 5). Once again, if we only looked at this second…
How To Make Passive Income with $500
What’s up you guys? It’s Graham here. So we’re going to be talking about something that I have not mentioned for a very long time here on YouTube, and it’s a term that either gets people really excited or makes them feel as though they’re about to be invi…