yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphical limit at point discontinuity


2m read
·Nov 11, 2024

So here we have the graph ( y = G(x) ). We have a little point discontinuity right over here at ( x = 7 ), and what we want to do is figure out what is the limit of ( G(x) ) as ( x ) approaches 7.

So essentially, we say, "Well, what is the function approaching as the inputs in the function are approaching 7?" Let's see. If we input as the input to the function approaches 7 from values less than 7, so if ( x = 3 ), ( G(3) ) is here. ( G(3) ) is right there. ( G(4) ) is right there. ( G(5) ) is right there.

( G(6) ) looks like it's a little bit more than or a little bit less than -1. ( G(6.5) ) looks like it's around -1/2. ( G(6.9) ) is right over there; it looks like it's a little bit less than 0. ( G(6.999) ) looks like it's still less than 0; it's a little bit closer to 0. So it looks like we're getting closer as ( x ) gets closer and closer, but not quite at 7. It looks like the value of our function is approaching 0.

Let's see if that's also true from values for ( x ) greater than 7. So ( G(9) ) is up here; it looks like it's around 6. ( G(8) ) looks like it's a little bit more than 2. ( G(7.5) ) looks like it's a little bit more than 1. ( G(7.1) ) looks like it's a little bit more than 0.

( G(7.1) ) looks like it's a little bit more than 0. ( G(7.01) ) is even closer to zero. ( G(7.00000001) ) will be even closer to zero. So once again, it looks like we are approaching zero as ( x ) approaches 7, in this case as we approach from larger values than 7.

This is interesting because the limit as ( x ) approaches 7 of ( G(x) ) is different than the function's actual value ( G(7) ). When we actually input 7 into the function, we can see the graph tells us that the value of the function is equal to 3. So we actually have this point discontinuity, sometimes called a removable discontinuity, right over here.

I'm not going to go into a lot of depth here, but this is starting to touch on how one of the ways that we can actually test for continuity is if the limit as we approach a value is not the same as the actual value of the function at that point. Well then we're probably talking about, or actually we are talking about, a discontinuity.

More Articles

View All
Two Routes to the Americas | The Great Human Race
After being trapped on the Bering Land Bridge for several thousand years, our ancestors headed south in search of warmer climates and better food sources. Once people made it across the land bridge, it was like the floodgates opened up. Kent and I are spl…
AP US history multiple choice example 2 | US History | Khan Academy
All right, so in the last video, we were taking a look at this multiple choice question from the AP US History exam practice booklet and trying out some strategies for making good choices as you go through these questions. The first thing we did was reall…
Why Four Cowboys Rode Wild Horses 3,000 Miles Across America (Part 3) | Nat Geo Live
10 years ago we had um 6 8,000 horses a year being adopted out and that number has plummeted to about 2500 a year. Part of it’s an awareness thing; part of it’s people don’t know horses. But I found one story um that really touched me. After the unbrande…
Slope and intercept meaning from a table | Linear equations & graphs | Algebra I | Khan Academy
We’re told that Felipe feeds his dog the same amount every day from a large bag of dog food. Two weeks after initially opening the bag, he decided to start weighing how much food remained in the bag on a weekly basis. Here’s some of his data: So we see af…
Visual understanding of regrouping decimals
What we’re going to do in this video is explore place value involving decimals, and in particular, we’re going to think about how you can regroup value from one place to another. This is going to be very useful later in your life when you start doing some…
A Dangerous Night In L.A. | LA 92
[sirens] DISPATCHER 1: There’s a reported structure fire for [inaudible] 64. DISPATCHER 2: We think it’s a pretty heavy flack on Adams above Holbart. DISPATCHER 3: –checking out. We’ve got bottles through the window. DISPATCHER 2: [inaudible] in that …