yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Constructing linear and exponential functions from graph | Algebra II | Khan Academy


3m read
·Nov 11, 2024

The graphs of the linear function ( f(x) = mx + b ) and the exponential function ( g(x) = a \cdot r^x ) where ( r > 0 ) pass through the points ((-1, 9)) and ((1, 1)). So this very clearly is the linear function; it is a line right over here, and this right over here is the exponential function.

Given the fact that this exponential function keeps decreasing as ( x ) gets larger, it's a pretty good hint that our ( r ) right over here—they tell us that ( r > 0 )—but it's a pretty good hint that ( r ) is going to be between ( 0 ) and ( 1 ). The fact that ( g(x) ) keeps approaching ( 0 ) as ( x ) increases suggests that.

But let's use the data they're giving us, the two points of intersection, to figure out what the equations of these two functions are. So first, we can tackle the linear function.

Starting with ( f(x) = mx + b ), we can use the two points to figure out the slope. Our ( m ) right over here is our slope, which is the change in ( y ) over the change in ( x )—the rate of change of the vertical axis with respect to the horizontal axis.

Let's see, between those two points, what is our change in ( x )? If we are going from ( x = -1 ) to ( x = 1 ), we could think of it as finishing at ( 1 ) and starting at ( -1 ). So ( 1 - (-1) = 2 ).

Now, what about our change in ( y )? We start at ( 9 ) and we end up at ( 1 ). So ( 1 - 9 = -8 ). Just to be clear, when ( x = 1 ), ( y = 1 ), and when ( x = -1 ), ( y = 9 ).

We see that we took the differences: we get ( -8/2 ), which is equal to ( -4 ). Now we can write that ( f(x) = -4x + b ).

You can see that slope right over here; every time you increase your ( x ) by ( 1 ), you are decreasing your ( y ) by ( 4 ). So that makes sense that the slope is ( -4 ).

Now let's think about what ( b ) is. To figure out ( b ), we could use either one of these points. Let's try ( f(1) ) because ( 1 ) is a nice simple number.

We can write ( f(1) = -4 \cdot 1 + b ) and they tell us that ( f(1) = 1 ). So this part right over here gives us ( -4 + b = 1 ). Adding ( 4 ) to both sides, we find ( b = 5 ).

Thus, we have ( f(x) = -4x + 5 ). Now, does that make sense that the ( y )-intercept is ( 5 )? By inspection, we could have guessed that. But now we've solved it, confirming ( f(x) = -4x + 5 ).

Now let's figure out the exponential function. We can use the two points to determine the unknowns. For example, let's try the first point.

So ( g(-1) = a \cdot r^{-1} ) equals ( 9 ). We could write this as ( a/r = 9 ). Multiplying both sides by ( r ), we find ( a = 9r ).

Now, using the other point, ( g(1) = a \cdot r^1 = a \cdot r = 1 ). So how can we use this information ( a = 9r ) and ( a \cdot r = 1 ) to solve for ( a ) and ( r )?

We can take this ( a ) and substitute it into the other equation, replacing ( a ) with ( 9r ). This gives us ( 9r \cdot r = 1 ) or ( 9r^2 = 1 ).

Dividing both sides by ( 9 ) gives us ( r^2 = \frac{1}{9} ). To find ( r ), we take the positive square root since they tell us that ( r > 0 ). Thus, ( r = \frac{1}{3} ).

Now we can substitute this back into either of the equations to find ( a ). We know ( a = 9r ), so ( a = 9 \cdot \frac{1}{3} = 3 ).

So our exponential function can be written as ( g(x) = 3 \cdot \left(\frac{1}{3}\right)^x ).

More Articles

View All
Surviving a Hostage Situation | No Man Left Behind
It’s hard to describe what was going on. There is total, not panic, but chaos. Pandemonium. I don’t know that anybody was ready for Anita to shoot me. I wasn’t. After the shot, it was a throbbing, burning pain, and I immediately became concerned about the…
Searching for the Himalayas' Ghost Cats | Podcast | Overheard at National Geographic
What you got? Do you see this? This is what we have been looking for. This is a fresh scene. Oh wow, man! Look at that! It’s quite a fresh track of a snow leopard. How can you tell? Oh, you see these toes and the paw? You see the contours here? They have…
Calculating percentile | Modeling data distributions | AP Statistics | Khan Academy
The Dot Plot shows the number of hours of daily driving time for 14 school bus drivers. Each dot represents a driver. So, for example, one driver drives one hour a day, two drivers drive two hours a day, one driver drives three hours a day, and it looks l…
BREAKING: The Federal Reserve Pivot (Major Changes Explained)
What’s up, Graham? It’s guys here, and here we go again. After a temporary pause, as of a few hours ago, the Federal Reserve increased their interest rates yet another 25 basis points, bringing us to the highest level that we’ve seen since the peak at the…
Activities to Build Creative Confidence
Hi Adobe Creative Educators! Welcome back to our Adobe Creative Educator show. We’re very excited to be here with you today and have some very incredible guests that are joining us. But if you’re just joining us from Facebook, YouTube, or Twitter, please …
Khan Academy Ed Talk with Nicholas Ferroni
Hello and welcome to Ed Talks with Khan Academy! Thank you for joining us today. I’m Kristen Decervo, the Chief Learning Officer at Khan Academy, and I’m excited today to talk with Nick Ferroni, who’s going to talk about what it would look like if we real…