yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Constructing linear and exponential functions from graph | Algebra II | Khan Academy


3m read
·Nov 11, 2024

The graphs of the linear function ( f(x) = mx + b ) and the exponential function ( g(x) = a \cdot r^x ) where ( r > 0 ) pass through the points ((-1, 9)) and ((1, 1)). So this very clearly is the linear function; it is a line right over here, and this right over here is the exponential function.

Given the fact that this exponential function keeps decreasing as ( x ) gets larger, it's a pretty good hint that our ( r ) right over here—they tell us that ( r > 0 )—but it's a pretty good hint that ( r ) is going to be between ( 0 ) and ( 1 ). The fact that ( g(x) ) keeps approaching ( 0 ) as ( x ) increases suggests that.

But let's use the data they're giving us, the two points of intersection, to figure out what the equations of these two functions are. So first, we can tackle the linear function.

Starting with ( f(x) = mx + b ), we can use the two points to figure out the slope. Our ( m ) right over here is our slope, which is the change in ( y ) over the change in ( x )—the rate of change of the vertical axis with respect to the horizontal axis.

Let's see, between those two points, what is our change in ( x )? If we are going from ( x = -1 ) to ( x = 1 ), we could think of it as finishing at ( 1 ) and starting at ( -1 ). So ( 1 - (-1) = 2 ).

Now, what about our change in ( y )? We start at ( 9 ) and we end up at ( 1 ). So ( 1 - 9 = -8 ). Just to be clear, when ( x = 1 ), ( y = 1 ), and when ( x = -1 ), ( y = 9 ).

We see that we took the differences: we get ( -8/2 ), which is equal to ( -4 ). Now we can write that ( f(x) = -4x + b ).

You can see that slope right over here; every time you increase your ( x ) by ( 1 ), you are decreasing your ( y ) by ( 4 ). So that makes sense that the slope is ( -4 ).

Now let's think about what ( b ) is. To figure out ( b ), we could use either one of these points. Let's try ( f(1) ) because ( 1 ) is a nice simple number.

We can write ( f(1) = -4 \cdot 1 + b ) and they tell us that ( f(1) = 1 ). So this part right over here gives us ( -4 + b = 1 ). Adding ( 4 ) to both sides, we find ( b = 5 ).

Thus, we have ( f(x) = -4x + 5 ). Now, does that make sense that the ( y )-intercept is ( 5 )? By inspection, we could have guessed that. But now we've solved it, confirming ( f(x) = -4x + 5 ).

Now let's figure out the exponential function. We can use the two points to determine the unknowns. For example, let's try the first point.

So ( g(-1) = a \cdot r^{-1} ) equals ( 9 ). We could write this as ( a/r = 9 ). Multiplying both sides by ( r ), we find ( a = 9r ).

Now, using the other point, ( g(1) = a \cdot r^1 = a \cdot r = 1 ). So how can we use this information ( a = 9r ) and ( a \cdot r = 1 ) to solve for ( a ) and ( r )?

We can take this ( a ) and substitute it into the other equation, replacing ( a ) with ( 9r ). This gives us ( 9r \cdot r = 1 ) or ( 9r^2 = 1 ).

Dividing both sides by ( 9 ) gives us ( r^2 = \frac{1}{9} ). To find ( r ), we take the positive square root since they tell us that ( r > 0 ). Thus, ( r = \frac{1}{3} ).

Now we can substitute this back into either of the equations to find ( a ). We know ( a = 9r ), so ( a = 9 \cdot \frac{1}{3} = 3 ).

So our exponential function can be written as ( g(x) = 3 \cdot \left(\frac{1}{3}\right)^x ).

More Articles

View All
These Two Young Bushmen Hope for a New Life in the Modern World | Short Film Showcase
[Music] Love h h h h my oh my. [Music] Fo I [Music] [Music] note foree. [Music] Spee [Music] when I go through new, I see a lot of hopeless faces. People who are here, we are undergoing a lot of change, and we are losing our way of life. Foree [Music] if …
Inside Notre Dame | The Story of God
[Music] Notre Dame [Music] More than 13 million people come here every year, yet only a fraction of them knows that these vaulted ceilings house one of the most precious and closely guarded relics in all Christendom: [Music] the Crown of Thorns. I’ve bee…
Steve Varsano: Jets, Current Market Affairs & Industry Trends
Hi, I’m Steve Varsano. I’m the founder of the jet business here in London, and I’m about to do an interview with a business channel in Germany to talk about the current situation of the corporate jet industry. So, I suppose a good place to start is Acade…
3d vector fields, introduction | Multivariable calculus | Khan Academy
So in the last video, I talked about vector fields in the context of two dimensions, and here I’d like to do the same but for three dimensions. A three-dimensional vector field is given by a certain multivariable function that has a three-dimensional inp…
Laser Month! Week 2 - Laser vs Balloons - Smarter Every Day 35
Is it hitting the brick wall? (Johan) It’s hitting the brick wall. (Destin) We’re not gonna set your house on fire this time? -no -I’m not gonna get through a brick wall, definitely not. (Destin) Hey, it’s me Destin. We have a class 4 laser. We’re in Hol…
Why Meat is the Best Worst Thing in the World 🍔
Humans love meat. Steak, fried chicken, bacon, pork belly, and sausages are just the best things! Eating meat has become so trivial that many people don’t consider something a proper meal if there’s no animal involved. Which is pretty amazing, since only …