yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Constructing linear and exponential functions from graph | Algebra II | Khan Academy


3m read
·Nov 11, 2024

The graphs of the linear function ( f(x) = mx + b ) and the exponential function ( g(x) = a \cdot r^x ) where ( r > 0 ) pass through the points ((-1, 9)) and ((1, 1)). So this very clearly is the linear function; it is a line right over here, and this right over here is the exponential function.

Given the fact that this exponential function keeps decreasing as ( x ) gets larger, it's a pretty good hint that our ( r ) right over here—they tell us that ( r > 0 )—but it's a pretty good hint that ( r ) is going to be between ( 0 ) and ( 1 ). The fact that ( g(x) ) keeps approaching ( 0 ) as ( x ) increases suggests that.

But let's use the data they're giving us, the two points of intersection, to figure out what the equations of these two functions are. So first, we can tackle the linear function.

Starting with ( f(x) = mx + b ), we can use the two points to figure out the slope. Our ( m ) right over here is our slope, which is the change in ( y ) over the change in ( x )—the rate of change of the vertical axis with respect to the horizontal axis.

Let's see, between those two points, what is our change in ( x )? If we are going from ( x = -1 ) to ( x = 1 ), we could think of it as finishing at ( 1 ) and starting at ( -1 ). So ( 1 - (-1) = 2 ).

Now, what about our change in ( y )? We start at ( 9 ) and we end up at ( 1 ). So ( 1 - 9 = -8 ). Just to be clear, when ( x = 1 ), ( y = 1 ), and when ( x = -1 ), ( y = 9 ).

We see that we took the differences: we get ( -8/2 ), which is equal to ( -4 ). Now we can write that ( f(x) = -4x + b ).

You can see that slope right over here; every time you increase your ( x ) by ( 1 ), you are decreasing your ( y ) by ( 4 ). So that makes sense that the slope is ( -4 ).

Now let's think about what ( b ) is. To figure out ( b ), we could use either one of these points. Let's try ( f(1) ) because ( 1 ) is a nice simple number.

We can write ( f(1) = -4 \cdot 1 + b ) and they tell us that ( f(1) = 1 ). So this part right over here gives us ( -4 + b = 1 ). Adding ( 4 ) to both sides, we find ( b = 5 ).

Thus, we have ( f(x) = -4x + 5 ). Now, does that make sense that the ( y )-intercept is ( 5 )? By inspection, we could have guessed that. But now we've solved it, confirming ( f(x) = -4x + 5 ).

Now let's figure out the exponential function. We can use the two points to determine the unknowns. For example, let's try the first point.

So ( g(-1) = a \cdot r^{-1} ) equals ( 9 ). We could write this as ( a/r = 9 ). Multiplying both sides by ( r ), we find ( a = 9r ).

Now, using the other point, ( g(1) = a \cdot r^1 = a \cdot r = 1 ). So how can we use this information ( a = 9r ) and ( a \cdot r = 1 ) to solve for ( a ) and ( r )?

We can take this ( a ) and substitute it into the other equation, replacing ( a ) with ( 9r ). This gives us ( 9r \cdot r = 1 ) or ( 9r^2 = 1 ).

Dividing both sides by ( 9 ) gives us ( r^2 = \frac{1}{9} ). To find ( r ), we take the positive square root since they tell us that ( r > 0 ). Thus, ( r = \frac{1}{3} ).

Now we can substitute this back into either of the equations to find ( a ). We know ( a = 9r ), so ( a = 9 \cdot \frac{1}{3} = 3 ).

So our exponential function can be written as ( g(x) = 3 \cdot \left(\frac{1}{3}\right)^x ).

More Articles

View All
Machu Picchu 101 | National Geographic
[Narrator] The stone city of Machu Picchu is one of the most fascinating archeological sites on the planet. Located northwest of Cuso, Peru, Machu Picchu is a testament to the power and ingenuity of the Inca people. During its prime, the Inca civilizati…
Lagrange multipliers, using tangency to solve constrained optimization
In the last video, I introduced a constrained optimization problem where we were trying to maximize this function f of x y equals x squared times y, but subject to a constraint that your values of x and y have to satisfy x squared plus y squared equals on…
My Video Went Viral. Here's Why
Now, you may have seen this thumbnail on YouTube. I mean, I can actually basically guarantee that YouTube has been shoving this in your face like, “Click! Click! Click it again!” So you might be wondering why. Why did this video in particular go viral? We…
An Educational Video About Monkey Sex | National Geographic
Aside from humans, in particularly your humble narrator, what primate species spends the least amount of time climbing? Gelada monkeys have, like us, adapted for a life spent mostly on the ground. This has produced some unique aspects of gelada anatomy, s…
The discovery of the double helix structure of DNA
In 1865, Mendel, often considered the father of modern genetics, comes up with a structured way of thinking about these inheritable factors, which we now call genes. Then, as we go into the early 1900s, his work was rediscovered, and people started to say…
10 Things I Wish I Knew Before Investing
Hey guys, welcome back to the channel. In this video, I’m going to be going through 10 things I wish I knew before I started investing, so hopefully we can get through these 10 in around about 10 minutes. So, time is on, let’s get stuck into it. The firs…