yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Constructing linear and exponential functions from graph | Algebra II | Khan Academy


3m read
·Nov 11, 2024

The graphs of the linear function ( f(x) = mx + b ) and the exponential function ( g(x) = a \cdot r^x ) where ( r > 0 ) pass through the points ((-1, 9)) and ((1, 1)). So this very clearly is the linear function; it is a line right over here, and this right over here is the exponential function.

Given the fact that this exponential function keeps decreasing as ( x ) gets larger, it's a pretty good hint that our ( r ) right over here—they tell us that ( r > 0 )—but it's a pretty good hint that ( r ) is going to be between ( 0 ) and ( 1 ). The fact that ( g(x) ) keeps approaching ( 0 ) as ( x ) increases suggests that.

But let's use the data they're giving us, the two points of intersection, to figure out what the equations of these two functions are. So first, we can tackle the linear function.

Starting with ( f(x) = mx + b ), we can use the two points to figure out the slope. Our ( m ) right over here is our slope, which is the change in ( y ) over the change in ( x )—the rate of change of the vertical axis with respect to the horizontal axis.

Let's see, between those two points, what is our change in ( x )? If we are going from ( x = -1 ) to ( x = 1 ), we could think of it as finishing at ( 1 ) and starting at ( -1 ). So ( 1 - (-1) = 2 ).

Now, what about our change in ( y )? We start at ( 9 ) and we end up at ( 1 ). So ( 1 - 9 = -8 ). Just to be clear, when ( x = 1 ), ( y = 1 ), and when ( x = -1 ), ( y = 9 ).

We see that we took the differences: we get ( -8/2 ), which is equal to ( -4 ). Now we can write that ( f(x) = -4x + b ).

You can see that slope right over here; every time you increase your ( x ) by ( 1 ), you are decreasing your ( y ) by ( 4 ). So that makes sense that the slope is ( -4 ).

Now let's think about what ( b ) is. To figure out ( b ), we could use either one of these points. Let's try ( f(1) ) because ( 1 ) is a nice simple number.

We can write ( f(1) = -4 \cdot 1 + b ) and they tell us that ( f(1) = 1 ). So this part right over here gives us ( -4 + b = 1 ). Adding ( 4 ) to both sides, we find ( b = 5 ).

Thus, we have ( f(x) = -4x + 5 ). Now, does that make sense that the ( y )-intercept is ( 5 )? By inspection, we could have guessed that. But now we've solved it, confirming ( f(x) = -4x + 5 ).

Now let's figure out the exponential function. We can use the two points to determine the unknowns. For example, let's try the first point.

So ( g(-1) = a \cdot r^{-1} ) equals ( 9 ). We could write this as ( a/r = 9 ). Multiplying both sides by ( r ), we find ( a = 9r ).

Now, using the other point, ( g(1) = a \cdot r^1 = a \cdot r = 1 ). So how can we use this information ( a = 9r ) and ( a \cdot r = 1 ) to solve for ( a ) and ( r )?

We can take this ( a ) and substitute it into the other equation, replacing ( a ) with ( 9r ). This gives us ( 9r \cdot r = 1 ) or ( 9r^2 = 1 ).

Dividing both sides by ( 9 ) gives us ( r^2 = \frac{1}{9} ). To find ( r ), we take the positive square root since they tell us that ( r > 0 ). Thus, ( r = \frac{1}{3} ).

Now we can substitute this back into either of the equations to find ( a ). We know ( a = 9r ), so ( a = 9 \cdot \frac{1}{3} = 3 ).

So our exponential function can be written as ( g(x) = 3 \cdot \left(\frac{1}{3}\right)^x ).

More Articles

View All
Ethical Rudeness | The Philosophy of Mencius
We live in an age in which freedom of speech and saying what we want is seen as one of the most important tries of human being. But does that make rudeness a virtue? While I think that people should have freedom of speech and that unpopular opinions shou…
More on Normal force (shoe on floor) | Physics | Khan Academy
Check out this fine looking sneaker right here. We’re going to use this shoe to illustrate some more challenging normal force problems, and we’re going to take this as an opportunity to discuss a lot of the misconceptions that people have about the normal…
Identifying value in digits
So I’m going to write down a number, and I’m going to think about how much do each of these digits of the number—what value do they represent? And actually, let me pick on this 2 here. What does that 2 represent? Does it just represent two, or does it rep…
Charlie Munger & Warren Buffett: The Dangers of EBITDA
If somebody is, if they think you’re focusing on EBITDA, they may arrange things so that that number looks bigger than it really is. It’s bigger than it really is anyway. I mean, the implication of that number is that it has great meaning. You take teleco…
Worked example: distance and displacement from position-time graphs | AP Physics 1 | Khan Academy
In other videos, we’ve already talked about the difference between distance and displacement, and we also saw what it meant to plot position versus time. What we’re going to do in this video is use all of those skills. We’re going to look at position vers…
Khan Academy Ed Talks with Ned Johnson - February 2, 2022
Hello and welcome to Ed Talks with Khan Academy! I’m Kristen De Cerva, the Chief Learning Officer here at Khan Academy, and I’m excited today to talk to Ned Johnson, who’s an author, speaker, and founder of PrepMatters, which is a company providing academ…