yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Calculating a confidence interval for the difference of proportions | AP Statistics | Khan Academy


4m read
·Nov 11, 2024

Duncan is investigating if residents of a city support the construction of a new high school. He's curious about the difference of opinion between residents in the north and south parts of the city. He obtained separate random samples of voters from each region. Here are the results:

In the north, 54 out of 120 said they want the school; 66 said they didn't. In the south, 77 said they wanted the school; 63 said they didn't.

Duncan wants to use these results to construct a 90% confidence interval to estimate the difference in the proportion of residents in these regions who support the construction project, ( p_s - p_n ). So these are the true parameters for the difference between these two populations. Assume that all of the conditions for inference have been met.

All right, which of the following is a correct 90% confidence interval based on Duncan's sample? So pause this video and see if you can figure that out. You will need a calculator, and depending on your calculator, you might need a z-table as well.

In a previous video, we introduced the idea of a two-sample z-interval. We talked about the conditions for inference. Lucky for us, they say the conditions for inference have been met, so we can go straight to calculating the confidence interval.

That confidence interval is going to be the difference between the sample proportions, so ( \hat{p}_s ) (the sample proportion in the south) minus the sample proportion in the north. It's going to be that difference plus or minus our critical value ( z^* ) times our estimate of the standard deviation of the sampling distribution of the difference between the sample proportions.

That is going to be our estimate. It is going to be ( \hat{p}_s (1 - \hat{p}_s) ) all of that over the sample size in the south, plus ( \hat{p}_n (1 - \hat{p}_n) ) all of that over the sample size in the north.

Okay, so our sample proportion in the south—I'll later use a calculator to get a decimal value, but this is going to be in the south—we have 77 out of 140 supported. So this is going to be 77 out of 140. In the north, this is going to be 54 out of 120 (54 out of 120).

What is my critical z-value? Well, here I'm going to have to either use a calculator or a z-table. Remember, we have a 90% confidence interval, and so let me see. I'll draw it right over here. If this is a normal distribution and you want to have a 90% confidence interval, that means you're containing 90% of the distribution, which means each of these tails will combine—they would have 10%—but each of them would have five percent, five percent of the distribution.

So I'm going to look at a z-table that figures out how many standard deviations below the mean do I need to be in order to get five percent. Right over here, that's going to tell me, well, if I'm that far below or above, that's going to be my critical z-value. So let me get that z-table out.

So I care about five percent, and I'm using this in a bit of a reverse direction. But let's see, five percent, so this is a little over five percent, getting closer to five percent, even closer to five percent. Now we've gotten right below five percent, so we're going to be in between this and this.

I could just split the difference, and I could just say 1.6. Let's just say 1.645 to go right in between. So this is going to be approximately equal to 1.645. Then let's see, we know what ( \hat{p}_s ) is, we know what ( \hat{p}_n ) is. In the south, our sample size is 140, and in the north, our sample size is 120.

And so now I just have to type all of this into the calculator, which is going to get a little hairy, but we will do it together. For the sake of time, we'll accelerate this typing into the calculator, but I'm going to start with calculating the upper bound. Then we'll calculate the lower bound, and then I think I've closed all my parentheses.

I think we’re ready to get the upper bound, which is going to be equal to 0.218 or approximately 0.202. So we can immediately look at our choices and see where that is the upper bound. This one is looking pretty good—0.202.

But let’s get the lower bound now. So I got my calculator back. Instead of retyping everything, I'm just going to put a minus here. So I go to second… and just so you see what I'm doing, second entry—I see the entry back, and then I can just change the part right before the radical.

So we are going to… all right, so this just needs to be a minus. Click enter, and there you have it! Our lower bound is negative 0.002, and that is indeed this choice right over here. So there we go; we have picked our choice.

More Articles

View All
Objective-C iPhone Programming Lesson 14 - Starting a Game
Hey guys, this is MacHas1 with our 14th iPhone programming tutorial. Now in the last tutorial, I promised you guys that we’d go more into the thing I did then. But, um, it doesn’t seem like many of you are actually interested in this. You just want me to…
Why “Looking Poor” Is Important
What’s up you guys, it’s Graham here. In the last few months, you might have come across one of these videos: the importance of looking poor. After all, when you really dig into it, it is insane how many people these days are pretending to be rich, diggi…
Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy
In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor. We also showe…
Simplifying resistor networks | Circuit analysis | Electrical engineering | Khan Academy
We’ve learned about series and parallel resistors. We’ve learned how to simplify series and parallel resistors into an equivalent resistor. Just to review, for the series resistor, our series equivalent ( R_{series} ) is equal to the sum of resistors in …
Mapping the Green Book | National Geographic
[Music] Most of us have good hearts, and most people want everybody to just have a fair and equal life in this country. But there was always kind of a disconnect, and there still is, in terms of understanding how our history is so close to us. It’s so imp…
Get Ahead Of The Game: 15 Asset Classes Set To Soar In 2024
2024 is an election year, so there’s no way the government will let the entire economy go down the drain. Right? Right. That’s what we’re all still hoping. Everyone agrees it’s not going to be an easy year to navigate. With the recession deepening, but no…