yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Calculating a confidence interval for the difference of proportions | AP Statistics | Khan Academy


4m read
·Nov 11, 2024

Duncan is investigating if residents of a city support the construction of a new high school. He's curious about the difference of opinion between residents in the north and south parts of the city. He obtained separate random samples of voters from each region. Here are the results:

In the north, 54 out of 120 said they want the school; 66 said they didn't. In the south, 77 said they wanted the school; 63 said they didn't.

Duncan wants to use these results to construct a 90% confidence interval to estimate the difference in the proportion of residents in these regions who support the construction project, ( p_s - p_n ). So these are the true parameters for the difference between these two populations. Assume that all of the conditions for inference have been met.

All right, which of the following is a correct 90% confidence interval based on Duncan's sample? So pause this video and see if you can figure that out. You will need a calculator, and depending on your calculator, you might need a z-table as well.

In a previous video, we introduced the idea of a two-sample z-interval. We talked about the conditions for inference. Lucky for us, they say the conditions for inference have been met, so we can go straight to calculating the confidence interval.

That confidence interval is going to be the difference between the sample proportions, so ( \hat{p}_s ) (the sample proportion in the south) minus the sample proportion in the north. It's going to be that difference plus or minus our critical value ( z^* ) times our estimate of the standard deviation of the sampling distribution of the difference between the sample proportions.

That is going to be our estimate. It is going to be ( \hat{p}_s (1 - \hat{p}_s) ) all of that over the sample size in the south, plus ( \hat{p}_n (1 - \hat{p}_n) ) all of that over the sample size in the north.

Okay, so our sample proportion in the south—I'll later use a calculator to get a decimal value, but this is going to be in the south—we have 77 out of 140 supported. So this is going to be 77 out of 140. In the north, this is going to be 54 out of 120 (54 out of 120).

What is my critical z-value? Well, here I'm going to have to either use a calculator or a z-table. Remember, we have a 90% confidence interval, and so let me see. I'll draw it right over here. If this is a normal distribution and you want to have a 90% confidence interval, that means you're containing 90% of the distribution, which means each of these tails will combine—they would have 10%—but each of them would have five percent, five percent of the distribution.

So I'm going to look at a z-table that figures out how many standard deviations below the mean do I need to be in order to get five percent. Right over here, that's going to tell me, well, if I'm that far below or above, that's going to be my critical z-value. So let me get that z-table out.

So I care about five percent, and I'm using this in a bit of a reverse direction. But let's see, five percent, so this is a little over five percent, getting closer to five percent, even closer to five percent. Now we've gotten right below five percent, so we're going to be in between this and this.

I could just split the difference, and I could just say 1.6. Let's just say 1.645 to go right in between. So this is going to be approximately equal to 1.645. Then let's see, we know what ( \hat{p}_s ) is, we know what ( \hat{p}_n ) is. In the south, our sample size is 140, and in the north, our sample size is 120.

And so now I just have to type all of this into the calculator, which is going to get a little hairy, but we will do it together. For the sake of time, we'll accelerate this typing into the calculator, but I'm going to start with calculating the upper bound. Then we'll calculate the lower bound, and then I think I've closed all my parentheses.

I think we’re ready to get the upper bound, which is going to be equal to 0.218 or approximately 0.202. So we can immediately look at our choices and see where that is the upper bound. This one is looking pretty good—0.202.

But let’s get the lower bound now. So I got my calculator back. Instead of retyping everything, I'm just going to put a minus here. So I go to second… and just so you see what I'm doing, second entry—I see the entry back, and then I can just change the part right before the radical.

So we are going to… all right, so this just needs to be a minus. Click enter, and there you have it! Our lower bound is negative 0.002, and that is indeed this choice right over here. So there we go; we have picked our choice.

More Articles

View All
Confucius and Confucianism
Now, I am going to talk about one of the greatest philosophers and teachers in human history, and that is Confucius, known to the Chinese as Kong Fuzi, which means Master Kong, or Kongzi, which means Grandmaster Kong. Once again, my apologies for my pronu…
Why NASA's Cassini Mission Was Important
What you’re looking at is the newest and currently last picture that humanity has of the gas giant Saturn. September 15, 2017, marked the end of an era for NASA and space exploration as a whole. At 7:55 a.m. Eastern Standard Time on that morning, the Cass…
15 Assets That Are Making People Rich
Assets put money in your pocket; liabilities cost you money. The more assets you have making money for you, the richer you are. This is the fundamental rule of getting rich. But that said, here are 15 assets that are making the rich even richer. Welcome t…
What happened to Bitcoin...
What’s up you guys? It’s Crypto Graham here, and I think it’s time we have the talk. You know, it’s been seven months since I made a video discussing the prices of Bitcoin and cryptocurrency. And you know what? I thought I was done. I didn’t think there w…
Investors Said No, Now What?
Investor spends two minutes writing the email, and then later hears that you’ve pivoted your entire company because of it. Right? Not a huge signal of, uh, conviction. [Music] Hello, this is Michael with Harj and Brad. Welcome to Inside the Group Partne…
Have We Ever All BLINKED At The Same Time?
Has there ever been a moment in our history when no one was watching because every living human just happened to blink at the exact same time? Well, let’s see. Humans blink about once every 4 seconds, and a typical blink is about a third of a second long.…