yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

General multiplication rule example: dependent events | Probability & combinatorics


2m read
·Nov 10, 2024

We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them will randomly select a card without replacement that will reveal what the star material must be in their craft. Here are the available cards. I guess the star material is the primary material they need to use in this competition. Maya and Doug both want to get silk as their star material. Maya will draw first, followed by Doug.

What is the probability that neither contestant draws silk? Pause this video and see if you can work through that before we work through this together.

All right, now let's work through this together. So the probability that neither contestant draws silk—so that would be, I'll just write it another way: the probability that I'll write MNS for Maya, no silk. So Maya, no silk, and Doug, no silk. That's just another way of saying, what is the probability that neither contestant draws silk?

And so this is going to be equivalent to the probability that Maya does not get silk, Maya no silk, right over here. Times the probability that Doug doesn't get silk, given that Maya did not get silk—given Maya, no silk. This line right over this vertical line, this is shorthand for given.

And so let's calculate each of these. So this is going to be equal to the probability that Maya gets no silk. She picked first; there's six options out of here, five of them are not silk. So it is five over six.

And then the probability that Doug does not get silk, given that Maya did not get silk. So if Maya did not get silk, then that means that silk is still in the mix. But there's only five possibilities left because Maya picked one of them, and four of them are not silk. There's still silk as an option.

It's important to recognize that the probability that Doug gets no silk is dependent on whether Maya got silk or not, so it's very important to have this given right over here. If these were independent events—if Maya picked and then put her card back in, and then Doug were to pick separately—then the probability that Doug gets no silk given that Maya got no silk would be the same thing as the probability that Doug gets no silk regardless of what Maya was doing.

And so this will end up becoming four over six, which is the same thing as two thirds.

More Articles

View All
Venus 101 | National Geographic
(Ethereal music) - [Angeli Gabriel] Named after the ancient Roman goddess of beauty, Venus is known for its exceptional brightness in the night sky. But behind this facade is a world of storms and infernos unlike anywhere else in the solar system. Venus,…
Q&A with Experts About the Upcoming Total Solar Eclipse | National Geographic
Good evening, y’all. I’m Dr. Jada Eisler, a National Geographic Explorer and an observational astrophysicist. We’re here in Terrebonne, Oregon. Over my shoulder is Monkeyface, where earlier today climbers were getting high so they could see the views of t…
Triggerfish - Smarter Every Day 4
[Music] [Rushing waves] Hey, it’s me, Destin. We’re in the Gulf of Mexico and we’re about to go fishing. And I’m gonna beat all these guys at fishing. It’s not gonna happen. It’s not gonna be me. (Destin) Alright ladies, how’re we doing over here? L…
Meet Madeline, the Robot Tamer | Short Film Showcase
[Music] I’m really passionate about inventing better ways to communicate with machines that can make things. For a long time, industrial robots have been the culprit of automation and replacing human labor. Basically, all the easy tasks to automate have …
Quadratic systems: a line and a parabola | Equations | Algebra 2 | Khan Academy
We’re told the parabola given by ( y = 3x^2 - 6x + 1 ) and the line given by ( y - x + 1 = 0 ) are graphed. So you can see the parabola here in red and we can see the line here in blue. The first thing they ask us is, one intersection point is clearly id…
Formula for first term in Fourier Series
Several videos ago, we introduced the idea of a Fourier series. I could take a periodic function, we started with the example of this square wave, and I could represent it as the sum of weighted sine and cosine functions. Then we took a little bit of an i…