yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

General multiplication rule example: dependent events | Probability & combinatorics


2m read
·Nov 10, 2024

We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them will randomly select a card without replacement that will reveal what the star material must be in their craft. Here are the available cards. I guess the star material is the primary material they need to use in this competition. Maya and Doug both want to get silk as their star material. Maya will draw first, followed by Doug.

What is the probability that neither contestant draws silk? Pause this video and see if you can work through that before we work through this together.

All right, now let's work through this together. So the probability that neither contestant draws silk—so that would be, I'll just write it another way: the probability that I'll write MNS for Maya, no silk. So Maya, no silk, and Doug, no silk. That's just another way of saying, what is the probability that neither contestant draws silk?

And so this is going to be equivalent to the probability that Maya does not get silk, Maya no silk, right over here. Times the probability that Doug doesn't get silk, given that Maya did not get silk—given Maya, no silk. This line right over this vertical line, this is shorthand for given.

And so let's calculate each of these. So this is going to be equal to the probability that Maya gets no silk. She picked first; there's six options out of here, five of them are not silk. So it is five over six.

And then the probability that Doug does not get silk, given that Maya did not get silk. So if Maya did not get silk, then that means that silk is still in the mix. But there's only five possibilities left because Maya picked one of them, and four of them are not silk. There's still silk as an option.

It's important to recognize that the probability that Doug gets no silk is dependent on whether Maya got silk or not, so it's very important to have this given right over here. If these were independent events—if Maya picked and then put her card back in, and then Doug were to pick separately—then the probability that Doug gets no silk given that Maya got no silk would be the same thing as the probability that Doug gets no silk regardless of what Maya was doing.

And so this will end up becoming four over six, which is the same thing as two thirds.

More Articles

View All
Camping on Sea Ice with Whale Hunters | Podcast | Overheard at National Geographic
An evo is an amazing word for something terrifying. It is when the pack ice that is floating on the other side of the ocean gets pushed by the wind, and it comes in and impacts the ice that we’re standing on. This is photographer Keely Wean. In 2018, he w…
2015 AP Chemistry free response 2c | Thermodynamics | Chemistry | Khan Academy
Because the dehydration reaction is not observed to occur at 298 Kelvin, the student claims that the reaction has an equilibrium constant less than 1.00 at 298 Kelvin. Do the thermodynamic data for the reaction support the student’s claim? Justify your an…
Warren Buffett Continues to Buy Stocks | His Most Recent Purchase
One of the best ways to learn about investing is to follow the portfolios of investors you respect. An investor whose portfolio I personally follow very closely is Warren Buffett. When investors like Buffett’s Berkshire Hathaway buy a large amount of a ce…
Safari Live - Day 352 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Good afternoon everybody, and welcome to the Mara Triangle in Kenya. There is a male leopard just walking behind that bush.…
What it means if you can see faces in objects - Susan G. Wardle
Imagine opening a bag of chips only to find Santa Claus looking back at you. Or turning the corner to see a smile as wide as a building. Humans see faces in all kinds of mundane objects, but these faces aren’t real—they’re illusions due to a phenomenon kn…
Missing numbers in addition and subtraction | 2nd grade | Khan Academy
Let’s say someone walks up to you on the street and says, “Quick! “73 plus blank is equal to 57.” What would blank be? Well, there’s a couple of ways to think about it. Blank is essentially what you have to add to 57 to get to 73. It’s the difference be…