yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

General multiplication rule example: dependent events | Probability & combinatorics


2m read
·Nov 10, 2024

We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them will randomly select a card without replacement that will reveal what the star material must be in their craft. Here are the available cards. I guess the star material is the primary material they need to use in this competition. Maya and Doug both want to get silk as their star material. Maya will draw first, followed by Doug.

What is the probability that neither contestant draws silk? Pause this video and see if you can work through that before we work through this together.

All right, now let's work through this together. So the probability that neither contestant draws silk—so that would be, I'll just write it another way: the probability that I'll write MNS for Maya, no silk. So Maya, no silk, and Doug, no silk. That's just another way of saying, what is the probability that neither contestant draws silk?

And so this is going to be equivalent to the probability that Maya does not get silk, Maya no silk, right over here. Times the probability that Doug doesn't get silk, given that Maya did not get silk—given Maya, no silk. This line right over this vertical line, this is shorthand for given.

And so let's calculate each of these. So this is going to be equal to the probability that Maya gets no silk. She picked first; there's six options out of here, five of them are not silk. So it is five over six.

And then the probability that Doug does not get silk, given that Maya did not get silk. So if Maya did not get silk, then that means that silk is still in the mix. But there's only five possibilities left because Maya picked one of them, and four of them are not silk. There's still silk as an option.

It's important to recognize that the probability that Doug gets no silk is dependent on whether Maya got silk or not, so it's very important to have this given right over here. If these were independent events—if Maya picked and then put her card back in, and then Doug were to pick separately—then the probability that Doug gets no silk given that Maya got no silk would be the same thing as the probability that Doug gets no silk regardless of what Maya was doing.

And so this will end up becoming four over six, which is the same thing as two thirds.

More Articles

View All
Easy Photography Life Hack!
Okay, I just learned the greatest life hack. If you see something that you want to take a picture of, but you left your phone at home, don’t worry. Just do this: blindfold yourself for like 30 minutes, and then stare at what you want to take a picture of …
Peter Lynch: Avoid These 10 Investment Mistakes
This is a very important rule. This is a very, it’s one of the key rules: the stock doesn’t know you own it. Remember that you could be a miserable person; you could have, uh, you know, never helped anybody, never done anything right, had 67 spouses, neve…
How To GET SMARTER In 2023
How to get smarter in 2023 the Alux way. Hello, Alexers! We hope you had a wonderful time during the holidays and don’t worry, the Alex lady will be back this week. But some of you might be already familiar with my voice from the Alux app. Now, back to t…
Interpreting graphs with slices | Multivariable calculus | Khan Academy
So in the last video, I described how to interpret three-dimensional graphs. I have another three-dimensional graph here; it’s a very bumpy guy. This happens to be the graph of the function ( f(x,y) = \cos(x) \cdot \sin(y) ). You know, I could also say th…
Into the Snow Storm: Checking for Predators | Life Below Zero
♪ I turn on all of my lights here. Other than the brush right there, I’m driving in a milk bottle. If this gets any worse, I’m done. So, what I’m gonna do is try to pick my way back, following my tracks. The wind and the snow is just filling them in as ra…
Who Is Responsible For Climate Change? – Who Needs To Fix It?
Since the Industrial Revolution, humans have released over 1.5 trillion tons of carbon dioxide or CO₂ into the Earth’s atmosphere. In the year 2019, we were still pumping out around 37 billion more. That’s 50 percent more than the year 2000 and almost thr…