yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

General multiplication rule example: dependent events | Probability & combinatorics


2m read
·Nov 10, 2024

We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them will randomly select a card without replacement that will reveal what the star material must be in their craft. Here are the available cards. I guess the star material is the primary material they need to use in this competition. Maya and Doug both want to get silk as their star material. Maya will draw first, followed by Doug.

What is the probability that neither contestant draws silk? Pause this video and see if you can work through that before we work through this together.

All right, now let's work through this together. So the probability that neither contestant draws silk—so that would be, I'll just write it another way: the probability that I'll write MNS for Maya, no silk. So Maya, no silk, and Doug, no silk. That's just another way of saying, what is the probability that neither contestant draws silk?

And so this is going to be equivalent to the probability that Maya does not get silk, Maya no silk, right over here. Times the probability that Doug doesn't get silk, given that Maya did not get silk—given Maya, no silk. This line right over this vertical line, this is shorthand for given.

And so let's calculate each of these. So this is going to be equal to the probability that Maya gets no silk. She picked first; there's six options out of here, five of them are not silk. So it is five over six.

And then the probability that Doug does not get silk, given that Maya did not get silk. So if Maya did not get silk, then that means that silk is still in the mix. But there's only five possibilities left because Maya picked one of them, and four of them are not silk. There's still silk as an option.

It's important to recognize that the probability that Doug gets no silk is dependent on whether Maya got silk or not, so it's very important to have this given right over here. If these were independent events—if Maya picked and then put her card back in, and then Doug were to pick separately—then the probability that Doug gets no silk given that Maya got no silk would be the same thing as the probability that Doug gets no silk regardless of what Maya was doing.

And so this will end up becoming four over six, which is the same thing as two thirds.

More Articles

View All
Edgar: crowdfunding drive
Uh, my name is Thomas, and last year I made the film “George Ought to Help.” Right now, I’m working on a follow-up called “Edgar the Exploiter.” It will be similar to George in that it will be a gentle pro-liberty propaganda piece, because George was a s…
We Can’t Prove Most Theorems with Known Physics
The overwhelming majority of theorems in mathematics are theorems that we cannot possibly prove. This is Girdle’s theorem, and it also comes out of Turing’s proof of what is and is not computable. These things that are not computable vastly outnumber the …
Approximating multi digit division
What we want to do in this video is get some practice estimating multi-digit division problems. So here we’re asked to estimate 794 divided by 18. Now, if you wanted to get the exact answer, you’d probably have to do—in fact, you would have to do—some lon…
What Could Trigger a Shark Attack? | Rogue Shark
Across the Whit Sundays, hundreds of baited cameras are deployed and listening stations fixed as scientists race to understand why these previously safe waters have turned deadly. As the footage comes in, one big clue emerges: the poor visibility. What w…
8 Key Principles To OVERCOME Self-Doubt & Negative Thoughts | Stoicism Insights
Every single one of us at some point in our lives faces that sneaky, undermining whisper of self-doubt. It’s like a shadow that lingers just out of sight, waiting to cloud our decisions and dampen our spirits. But here’s the catch. The real battle isn’t a…
Elements and atomic number | Atoms, isotopes, and ions | High school chemistry | Khan Academy
We know that everything in the universe is composed of atoms, but not all atoms are the same. There are many different types of atoms called elements, each with a unique set of physical and chemical properties. Many elements are probably familiar to you; …