yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

General multiplication rule example: dependent events | Probability & combinatorics


2m read
·Nov 10, 2024

We're told that Maya and Doug are finalists in a crafting competition. For the final round, each of them will randomly select a card without replacement that will reveal what the star material must be in their craft. Here are the available cards. I guess the star material is the primary material they need to use in this competition. Maya and Doug both want to get silk as their star material. Maya will draw first, followed by Doug.

What is the probability that neither contestant draws silk? Pause this video and see if you can work through that before we work through this together.

All right, now let's work through this together. So the probability that neither contestant draws silk—so that would be, I'll just write it another way: the probability that I'll write MNS for Maya, no silk. So Maya, no silk, and Doug, no silk. That's just another way of saying, what is the probability that neither contestant draws silk?

And so this is going to be equivalent to the probability that Maya does not get silk, Maya no silk, right over here. Times the probability that Doug doesn't get silk, given that Maya did not get silk—given Maya, no silk. This line right over this vertical line, this is shorthand for given.

And so let's calculate each of these. So this is going to be equal to the probability that Maya gets no silk. She picked first; there's six options out of here, five of them are not silk. So it is five over six.

And then the probability that Doug does not get silk, given that Maya did not get silk. So if Maya did not get silk, then that means that silk is still in the mix. But there's only five possibilities left because Maya picked one of them, and four of them are not silk. There's still silk as an option.

It's important to recognize that the probability that Doug gets no silk is dependent on whether Maya got silk or not, so it's very important to have this given right over here. If these were independent events—if Maya picked and then put her card back in, and then Doug were to pick separately—then the probability that Doug gets no silk given that Maya got no silk would be the same thing as the probability that Doug gets no silk regardless of what Maya was doing.

And so this will end up becoming four over six, which is the same thing as two thirds.

More Articles

View All
Culinary Destinations | Epcot Becoming Episode 4 | National Geographic
Okay, perfect. The food should have a story. Something you remember for years to come. This is delicious. The creations of the chefs here at EPCOT represent the connecting of different cultures around the world. More than 40 food and drink spots offer uni…
Warren Buffett: How to Know if a Stock is Undervalued
How do you calculate the intrinsic value of a stock? This may be the single most important question in all of investing. Everyone knows that the secret to good investing is finding undervalued stocks, but how exactly do you determine if a stock is underva…
Black Holes Explained – From Birth to Death
Black holes are one of the strangest things in existence. They don’t seem to make any sense at all. Where do they come from… and what happens if you fall into one? Stars are incredibly massive collections of mostly hydrogen atoms that collapsed from enor…
How To Prepare For The 2020 Recession
What’s up you guys, it’s Graham here. So, we can’t ignore these articles any longer. They’re pretty much coming up every single day, so I figured this is something we should talk about. And that is the looming recession. To start, on January 29th, CNBC p…
🎉100th show! 🎉 Homeroom with Sal & Tabatha Rosproy - Thursday, September 24
Hi everyone! Welcome to the Homeroom live stream. Sal here from Khan Academy. We have a very exciting guest today! We have Tabitha Ross, Pro 2020 National Teacher of the Year. So, if you have questions for what it’s like to be a teacher, especially a teac…
See How Cracked Skin Helps Elephants Stay Cool | Decoder
Whether it’s swimming, splashing, or rolling around in the mud, there’s nothing an elephant loves more than bath time. This elephant water park isn’t just for fun, though. Temperatures in the hot African savanna average around 85 degrees Fahrenheit. But s…