yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Order of operations with fractions and exponents | 6th grade | Khan Academy


3m read
·Nov 10, 2024

Pause this video and see if you can evaluate this expression before we do it together.

All right, now let's work on this together. We see that we have a lot of different operations here. We have exponents, we have multiplication, we have addition, we have division, we have parentheses, and so to interpret this properly, we just have to remind ourselves of the order of operations.

So, you start with parentheses, then go to exponents, then multiplication and division, then addition and subtraction.

So, we see that we're going to—whatever is over here—we're eventually going to square it. That's the only place that we have the parentheses. But how are we going to evaluate what's inside of these parentheses?

So, let's then think about, all right, we have an exponent here that we can evaluate. We know that 2 squared is the same thing as 2 times 2, which is the same thing as 4. No more exponents to evaluate, so then we go to multiplication and division.

So, we know by how this fraction sign is written that we need to evaluate the numerator and then divide it by the entire denominator right over here. Now, in this numerator, we have to remind ourselves that we do this multiplication before we do this addition. We don't just go left to right.

So, we know that it's one plus—and I could put parentheses here to really emphasize that we do the multiplication first—so before this gets too messy, let me just rewrite everything. I'm going to do this multiplication up here first, and actually, in the denominator, I'm going to do this multiplication first as well.

So, this is all going to simplify to 1 over 14, or 1 divided by 14, times. Now, this numerator here is going to be 1 plus 4 times 3. 4 times 3 is 12. All of that is going to be over 7 plus 2 times 3, which is, of course, equal to 6, and then I am going to have our plus 1 here, and then I square everything.

Well, now we can evaluate this numerator and this denominator. Find another color to do it in. This numerator, 1 plus 12, is going to be equal to 13, and 7 plus 6, interestingly, is also equal to 13.

So, we have 1 over 14—or 1 divided by 14—times this whole thing squared, and inside you have 13 divided by 13 plus 1. Well, we know we need to do division before we do addition, so we will want to evaluate this part before we do the addition.

What is 13 divided by 13? Well, that's just going to be equal to 1. So, I can rewrite this as 1 over 14 times 1 plus 1. All of that squared.

And now we'll want to do this parentheses. So, let's do that. 1 plus 1 is going to be equal, of course, to 2. And then we're going to do the exponents: 2 squared is, of course, equal to 4.

And then we're going to multiply 1 over 14 times 4. Now you could interpret this, and they're equivalent. You could say, hey, this is the same thing as multiplying 1 over 14 times 4, or you could say this is the same thing as multiplying 1 times 4 divided by 14.

Either way you look at it, you're going to get 4 over 14, and we're done. If you want, you could rewrite this by dividing both the numerator and the denominator by 2, and you could get 2 over 7. But that's how we can evaluate this pretty complex expression, just step by step, looking at what we can simplify first.

More Articles

View All
Priceless Ancient Treasures Leave Greece for First Time | National Geographic
[Music] Some of the objects are so valuable that it’s like what we call hand carry, and that’s basically the courier is handcuffed to the briefcase and escorted through security. The golden wreath of Meup, it’s like a crown, would have gone on her head a…
Jacksonian Democracy part 1
When we talk about the big social movements of the early 19th century in the United States, you can’t deny that the emergence of Jacksonian Democracy is one of the most influential aspects of early 19th century culture. So, what was Jacksonian Democracy,…
Meth in the City (Clip) | To Catch a Smuggler | National Geographic
If you take a quick look at this, so you don’t see anything. Okay. The only thing that might give it away is this part, what we glued it again, so that it’s an indication that somebody opened it up and glued it back again. Now, you can see here the vein,…
Mayans and Teotihuacan | World History | Khan Academy
The Mayan civilization is one of the most long-lasting civilizations, not just in the ancient Americas, but in the world in general. You can see the rough outline here on this map of where the Mayan civilization occurred. You can see it has the Yucatan Pe…
Why I won't be getting the Apple Credit Card...
Alright guys, so we got to have a heart-to-heart and talk about the Apple credit card and why I won’t be getting one. They know a lot of you have asked for my opinion when it comes to this, especially coming from the perspective of someone who’s a bit of …
The future of YouTube: Is it slowly getting worse and becoming too “Advertiser Friendly?”
What’s up, you guys? It’s Graham here. So this video is gonna be entirely different from anything else I’ve ever uploaded. It’s not about real estate, it’s not about money, it’s not about mindset. I’m talking about YouTube today and why they’re going thro…