yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Order of operations with fractions and exponents | 6th grade | Khan Academy


3m read
·Nov 10, 2024

Pause this video and see if you can evaluate this expression before we do it together.

All right, now let's work on this together. We see that we have a lot of different operations here. We have exponents, we have multiplication, we have addition, we have division, we have parentheses, and so to interpret this properly, we just have to remind ourselves of the order of operations.

So, you start with parentheses, then go to exponents, then multiplication and division, then addition and subtraction.

So, we see that we're going to—whatever is over here—we're eventually going to square it. That's the only place that we have the parentheses. But how are we going to evaluate what's inside of these parentheses?

So, let's then think about, all right, we have an exponent here that we can evaluate. We know that 2 squared is the same thing as 2 times 2, which is the same thing as 4. No more exponents to evaluate, so then we go to multiplication and division.

So, we know by how this fraction sign is written that we need to evaluate the numerator and then divide it by the entire denominator right over here. Now, in this numerator, we have to remind ourselves that we do this multiplication before we do this addition. We don't just go left to right.

So, we know that it's one plus—and I could put parentheses here to really emphasize that we do the multiplication first—so before this gets too messy, let me just rewrite everything. I'm going to do this multiplication up here first, and actually, in the denominator, I'm going to do this multiplication first as well.

So, this is all going to simplify to 1 over 14, or 1 divided by 14, times. Now, this numerator here is going to be 1 plus 4 times 3. 4 times 3 is 12. All of that is going to be over 7 plus 2 times 3, which is, of course, equal to 6, and then I am going to have our plus 1 here, and then I square everything.

Well, now we can evaluate this numerator and this denominator. Find another color to do it in. This numerator, 1 plus 12, is going to be equal to 13, and 7 plus 6, interestingly, is also equal to 13.

So, we have 1 over 14—or 1 divided by 14—times this whole thing squared, and inside you have 13 divided by 13 plus 1. Well, we know we need to do division before we do addition, so we will want to evaluate this part before we do the addition.

What is 13 divided by 13? Well, that's just going to be equal to 1. So, I can rewrite this as 1 over 14 times 1 plus 1. All of that squared.

And now we'll want to do this parentheses. So, let's do that. 1 plus 1 is going to be equal, of course, to 2. And then we're going to do the exponents: 2 squared is, of course, equal to 4.

And then we're going to multiply 1 over 14 times 4. Now you could interpret this, and they're equivalent. You could say, hey, this is the same thing as multiplying 1 over 14 times 4, or you could say this is the same thing as multiplying 1 times 4 divided by 14.

Either way you look at it, you're going to get 4 over 14, and we're done. If you want, you could rewrite this by dividing both the numerator and the denominator by 2, and you could get 2 over 7. But that's how we can evaluate this pretty complex expression, just step by step, looking at what we can simplify first.

More Articles

View All
There Are No Politics on the International Space Station, with Astronaut Ron Garan | Big Think
A good example of collaboration is to look at the International Space Station. The International Space Station is arguably one of the most complex complicated structures ever built. It’s bigger than a football field. If it was on the Earth, it would weigh…
Deep Sea Shark Stakeout | National Geographic
Can I get a clap from Buck? Excellent, Buck. And we go live in three, two. My name is Annie Roth, and I am a journalist on assignment with National Geographic. My name is Melissa Márquez. I’m a shark scientist aboard the “Ocean Explorer.” And like Meli…
End behavior of algebraic models | Mathematics III | High School Math | Khan Academy
A barista poured a cup of coffee. The initial temperature of the coffee was 90 degrees Celsius. As time t increased, the temperature c of the coffee began to decrease exponentially and approach room temperature of 20 degrees Celsius. Which of the followi…
Explorers Festival, Thursday June 15 | National Geographic
from a distance it always seems impossible. But impossible is just a place we haven’t been to yet. Impossible is what beckons us to go further, to explore. It calls us from the wild, lures us into the unknown, asks us to dig deeper, to look at things from…
Caught in an Underwater Avalanche | Expedition Raw
We’re heading down to explore an underwater cave. We always run a guideline, and you place it very carefully because you have to assume that you’re going to come out in no visibility. Without that line, you have low odds of getting out. Then all of a sud…
Plotting inequalities on a number line | Equations & inequalities | 6th grade | Khan Academy
We’re told that Pierre has 48 minutes until he needs to get ready for his dance lesson. Graph how many minutes he can spend playing with his pet before getting ready. If you are so inspired, I encourage you to be so inspired, pause the video, and see if y…