yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Order of operations with fractions and exponents | 6th grade | Khan Academy


3m read
·Nov 10, 2024

Pause this video and see if you can evaluate this expression before we do it together.

All right, now let's work on this together. We see that we have a lot of different operations here. We have exponents, we have multiplication, we have addition, we have division, we have parentheses, and so to interpret this properly, we just have to remind ourselves of the order of operations.

So, you start with parentheses, then go to exponents, then multiplication and division, then addition and subtraction.

So, we see that we're going to—whatever is over here—we're eventually going to square it. That's the only place that we have the parentheses. But how are we going to evaluate what's inside of these parentheses?

So, let's then think about, all right, we have an exponent here that we can evaluate. We know that 2 squared is the same thing as 2 times 2, which is the same thing as 4. No more exponents to evaluate, so then we go to multiplication and division.

So, we know by how this fraction sign is written that we need to evaluate the numerator and then divide it by the entire denominator right over here. Now, in this numerator, we have to remind ourselves that we do this multiplication before we do this addition. We don't just go left to right.

So, we know that it's one plus—and I could put parentheses here to really emphasize that we do the multiplication first—so before this gets too messy, let me just rewrite everything. I'm going to do this multiplication up here first, and actually, in the denominator, I'm going to do this multiplication first as well.

So, this is all going to simplify to 1 over 14, or 1 divided by 14, times. Now, this numerator here is going to be 1 plus 4 times 3. 4 times 3 is 12. All of that is going to be over 7 plus 2 times 3, which is, of course, equal to 6, and then I am going to have our plus 1 here, and then I square everything.

Well, now we can evaluate this numerator and this denominator. Find another color to do it in. This numerator, 1 plus 12, is going to be equal to 13, and 7 plus 6, interestingly, is also equal to 13.

So, we have 1 over 14—or 1 divided by 14—times this whole thing squared, and inside you have 13 divided by 13 plus 1. Well, we know we need to do division before we do addition, so we will want to evaluate this part before we do the addition.

What is 13 divided by 13? Well, that's just going to be equal to 1. So, I can rewrite this as 1 over 14 times 1 plus 1. All of that squared.

And now we'll want to do this parentheses. So, let's do that. 1 plus 1 is going to be equal, of course, to 2. And then we're going to do the exponents: 2 squared is, of course, equal to 4.

And then we're going to multiply 1 over 14 times 4. Now you could interpret this, and they're equivalent. You could say, hey, this is the same thing as multiplying 1 over 14 times 4, or you could say this is the same thing as multiplying 1 times 4 divided by 14.

Either way you look at it, you're going to get 4 over 14, and we're done. If you want, you could rewrite this by dividing both the numerator and the denominator by 2, and you could get 2 over 7. But that's how we can evaluate this pretty complex expression, just step by step, looking at what we can simplify first.

More Articles

View All
Rediscovering Glen Canyon's Lost Wonders by Kayak | Short Film Showcase
So we’re up early in the morning and we’re heading across the bay to the Cathedral in the desert, which is a place we’ve all been looking forward to. It’s this beautiful alcove back at the end of the high-water mark in the Escalante canyons, and it’s been…
There is NO HARD language -A polyglot's perspective
As a polyglot, I always get this question: Is Chinese like Japanese, as Turkish is… blah blah? Language hard to learn? The answer is, there is no hard language. Hard language doesn’t exist. Hi, guys! It’s me, Dory. For those who are new here, I’m a polygl…
Extraneous solutions of radical equations | Mathematics III | High School Math | Khan Academy
Let’s say we have the radical equation (2x - 1 = \sqrt{8 - x}). So we already have the radical isolated on one side of the equation. We might say, “Well, let’s just get rid of the radical; let’s square both sides of this equation.” So we might say that …
The Commercial Real Estate Problem Just Got Worse.
There will be losses by some banks. It isn’t really the big banks; it’s really medium and small-sized banks that have these higher concentrations. It’s going to be with us. It’s a problem we’ll be working through, I think, for several years. Commercial re…
Zeros of polynomials (multiplicity) | Polynomial graphs | Algebra 2 | Khan Academy
All right, now let’s work through this together. And we can see that all of the choices are expressed as a polynomial in factored form. And factored form is useful when we’re thinking about the roots of a polynomial, the x-values that make that polynomi…
How To Make The Perfect Bad Plan
This video is for those of you who’ve never started anything on your own but really have the edge. You feel the urge to have something you can call your own, but you just don’t know where or how to start. Well, this video is going to get you started in th…