yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Order of operations with fractions and exponents | 6th grade | Khan Academy


3m read
·Nov 10, 2024

Pause this video and see if you can evaluate this expression before we do it together.

All right, now let's work on this together. We see that we have a lot of different operations here. We have exponents, we have multiplication, we have addition, we have division, we have parentheses, and so to interpret this properly, we just have to remind ourselves of the order of operations.

So, you start with parentheses, then go to exponents, then multiplication and division, then addition and subtraction.

So, we see that we're going to—whatever is over here—we're eventually going to square it. That's the only place that we have the parentheses. But how are we going to evaluate what's inside of these parentheses?

So, let's then think about, all right, we have an exponent here that we can evaluate. We know that 2 squared is the same thing as 2 times 2, which is the same thing as 4. No more exponents to evaluate, so then we go to multiplication and division.

So, we know by how this fraction sign is written that we need to evaluate the numerator and then divide it by the entire denominator right over here. Now, in this numerator, we have to remind ourselves that we do this multiplication before we do this addition. We don't just go left to right.

So, we know that it's one plus—and I could put parentheses here to really emphasize that we do the multiplication first—so before this gets too messy, let me just rewrite everything. I'm going to do this multiplication up here first, and actually, in the denominator, I'm going to do this multiplication first as well.

So, this is all going to simplify to 1 over 14, or 1 divided by 14, times. Now, this numerator here is going to be 1 plus 4 times 3. 4 times 3 is 12. All of that is going to be over 7 plus 2 times 3, which is, of course, equal to 6, and then I am going to have our plus 1 here, and then I square everything.

Well, now we can evaluate this numerator and this denominator. Find another color to do it in. This numerator, 1 plus 12, is going to be equal to 13, and 7 plus 6, interestingly, is also equal to 13.

So, we have 1 over 14—or 1 divided by 14—times this whole thing squared, and inside you have 13 divided by 13 plus 1. Well, we know we need to do division before we do addition, so we will want to evaluate this part before we do the addition.

What is 13 divided by 13? Well, that's just going to be equal to 1. So, I can rewrite this as 1 over 14 times 1 plus 1. All of that squared.

And now we'll want to do this parentheses. So, let's do that. 1 plus 1 is going to be equal, of course, to 2. And then we're going to do the exponents: 2 squared is, of course, equal to 4.

And then we're going to multiply 1 over 14 times 4. Now you could interpret this, and they're equivalent. You could say, hey, this is the same thing as multiplying 1 over 14 times 4, or you could say this is the same thing as multiplying 1 times 4 divided by 14.

Either way you look at it, you're going to get 4 over 14, and we're done. If you want, you could rewrite this by dividing both the numerator and the denominator by 2, and you could get 2 over 7. But that's how we can evaluate this pretty complex expression, just step by step, looking at what we can simplify first.

More Articles

View All
How Does Kodak Make Film? (Kodak Factory Tour Part 1 of 3) - Smarter Every Day 271
Hey, it’s me, Destin. Welcome back to Smarter Every Day. I love analog film photography. There’s something to me about being able to capture a memory in a physical object with light and physics and chemistry. It’s just beautiful. In a previous episode of…
Compelling Models for Conservation | Explorers Fest
Loved it! I don’t— I didn’t really think about where it came from. Probably in the same way that you didn’t really think about where your food came from when you were a kid too. I don’t remember exactly when I decided to stop eating sharks in soup or when…
How insurance works | Insurance | Financial literacy | Khan Academy
Let’s say that you have a car that right now is worth about ten thousand dollars. You don’t have ten thousand dollars as a cushion if, by chance, your car were to get totaled, or if it were to get stolen, or something were to happen. You don’t have an ext…
Birth of the Vibrator | Original Sin: Sex
[Music] From the turn of the 20th century, sex has been literally electrified by technology. One of the first five electric gadgets, besides the sewing machine, fan, toaster, and tea kettle, was a plug-in sexual stimulator. The vibrator was a cure-all for…
Dear 2022
I don’t know if it’s just me, but it’s basically 2022 now, and I’m still mentally processing 2020. When I think back about 2021 and what it did for me as a person, it doesn’t feel like much of anything new, just a rehash of last year. It’s like they’ve me…
Area model for multiplying polynomials with negative terms
In previous videos, we’ve already looked at using area models to think about multiplying expressions, like multiplying x plus seven times x plus three. In those videos, we saw that we could think about it as finding the area of a rectangle, where we could…