yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Domain and range from graphs of quadratic and exponential functions | Khan Academy


2m read
·Nov 10, 2024

So what we want to do in this video is try to figure out the domain and ranges of G of X that's depicted right over here and H of X that's depicted over here. So pause this video and see if you can figure out the domain and range of each of these functions.

All right, now let's start with G of X. Now, the domain, just as a reminder, this is all of the X values over which G of X is defined. Or if we view a function as you can take some input and you put it into that function and you're going to get an output, which in this case would be G of X. Our domain is what are all of the things that I could input here?

We could see that this graph keeps going to the left; it keeps going to the right. So I could input any real number over here for X. So the domain here is all real values of X.

Now what about range? So let me write that over here. Range: these are all of the possible values that our actual function could take on. So what's the highest value that our function can take on? Well, the highest value for this graph right over here looks like F of X is equal to two.

And then every other value that it takes on is lower than that, and it seems like it can take on an arbitrarily low value because this function keeps decreasing on either side. So the range looks like it maxes out at F of X is equal to 2.

So another way to think about it is F of X is going to be less than or equal to two. That's all the possible outputs right over here. Now let's do this function H of X. So what are all of the X values it could take on? Well, this one isn't defined for all X's.

So it looks like this is halfway between zero and two. So this right over here looks like it's at one, but it's an open circle, so it's not quite defined at one. But as soon as we get less than one, it is defined. Any of these values I can take an X and figure out its F of X, and it seems like I can just keep going lower and lower and lower.

Because even though this function, as you go to the left, it looks like it's increasing very quickly, but it just keeps going to the left. So I can have any X value that is less than one; it seems like H is defined there.

So our domain in this situation, I'll write it up here: the domain is it's defined for any X less than one. Any X less than one. And then what is the range? What is the range?

Well, it looks like right at one it's not defined; it's not defined. But for any higher than that, the function can take on that value. Or another way I could say it is at one, the function can't quite take on that value; it doesn't look like it can, but anything higher than that, it can.

So it looks like H of X, H of X is greater than one, can take on any value larger than one, and we are done.

More Articles

View All
Over- and under-estimation of Riemann sums | AP Calculus AB | Khan Academy
Consider the left and right Riemann sums that would approximate the area under y is equal to g of x between x equals 2 and x equals 8. So we want to approximate this light blue area right over here. Are the approximations overestimations or underestimatio…
Comparison: Rise of empires | World History | Khan Academy
What we’re going to do in this video is think about the rise of empires and make the comparison with four very early empires that we have studied: Achaemenid Persia, the Maurya Empire in India, Han China, and the Roman Empire. So let’s just start with a …
Jacksonian Democracy part 1
When we talk about the big social movements of the early 19th century in the United States, you can’t deny that the emergence of Jacksonian Democracy is one of the most influential aspects of early 19th century culture. So, what was Jacksonian Democracy,…
The Ponzi Factor | Stocks are NOT Ownership Instruments
The reason why finance professionals do not see the stock market as a Ponzi scheme is because they believe the credibility for an idea rests on repetition, tradition, and people who recite it rather than proof, logic, or facts. The first fallacy, which I…
Calculations using Avogadro's number (part 2) | Chemistry | Khan Academy
Let’s solve a few numerical on Avogadro number and moles. Here’s the first one: how many glucose molecules are in 2.37 moles of glucose? Let’s quickly remind ourselves what moles are. Moles are like dozens. Just like how one dozen equals 12, a mole repre…
This Empowering Memorial Honors the Legacies of Military Women | National Geographic
I remember vividly at the dedication 20 years ago of the memorial. There was a World War I veteran in her uniform who spoke. She said, “When I served in the Navy, women were not even allowed to vote.” I thought, what a brave woman! So in that hundred year…