yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Domain and range from graphs of quadratic and exponential functions | Khan Academy


2m read
·Nov 10, 2024

So what we want to do in this video is try to figure out the domain and ranges of G of X that's depicted right over here and H of X that's depicted over here. So pause this video and see if you can figure out the domain and range of each of these functions.

All right, now let's start with G of X. Now, the domain, just as a reminder, this is all of the X values over which G of X is defined. Or if we view a function as you can take some input and you put it into that function and you're going to get an output, which in this case would be G of X. Our domain is what are all of the things that I could input here?

We could see that this graph keeps going to the left; it keeps going to the right. So I could input any real number over here for X. So the domain here is all real values of X.

Now what about range? So let me write that over here. Range: these are all of the possible values that our actual function could take on. So what's the highest value that our function can take on? Well, the highest value for this graph right over here looks like F of X is equal to two.

And then every other value that it takes on is lower than that, and it seems like it can take on an arbitrarily low value because this function keeps decreasing on either side. So the range looks like it maxes out at F of X is equal to 2.

So another way to think about it is F of X is going to be less than or equal to two. That's all the possible outputs right over here. Now let's do this function H of X. So what are all of the X values it could take on? Well, this one isn't defined for all X's.

So it looks like this is halfway between zero and two. So this right over here looks like it's at one, but it's an open circle, so it's not quite defined at one. But as soon as we get less than one, it is defined. Any of these values I can take an X and figure out its F of X, and it seems like I can just keep going lower and lower and lower.

Because even though this function, as you go to the left, it looks like it's increasing very quickly, but it just keeps going to the left. So I can have any X value that is less than one; it seems like H is defined there.

So our domain in this situation, I'll write it up here: the domain is it's defined for any X less than one. Any X less than one. And then what is the range? What is the range?

Well, it looks like right at one it's not defined; it's not defined. But for any higher than that, the function can take on that value. Or another way I could say it is at one, the function can't quite take on that value; it doesn't look like it can, but anything higher than that, it can.

So it looks like H of X, H of X is greater than one, can take on any value larger than one, and we are done.

More Articles

View All
Kevin O'Leary Jamming with Rock and Roll Legend Randy Bachman
Randy Bachman is a legend in the world of rock and roll. He’s earned over 120 gold and platinum albums and singles and sold over 40 million records over his long career as both a performer and producer. CBC Music has declared November as guitar month. In …
Introduction to nouns | The parts of speech | Grammar | Khan Academy
Hello grammarians! Welcome to the English parts of speech. We’re going to begin with the noun, the lovely, wonderful noun—your friend and mine. They’re mostly what you’re going to encounter in sentences. Most sentences in English contain at least one noun…
Tsunamis 101 | National Geographic
A tragic scene: entire cities flooded, entire towns inundated, an unending stream of floating debris—buildings, cars, people swept away in an unstoppable wave. It’s a brutal reminder tsunamis are dangerous and unpredictable. But what causes these giant w…
Warren Buffett: How to Invest in the Stock Market in 2021
There were at least 2,000 companies that entered the auto business because it clearly had this incredible future. And of course, you remember that in 2009, there were three left, two of which went bankrupt. So there is a lot more to picking stocks than fi…
Finding derivative with fundamental theorem of calculus | AP®︎ Calculus AB | Khan Academy
Let’s say that we have the function g of x, and it is equal to the definite integral from 19 to x of the cube root of t dt. What I’m curious about finding, or trying to figure out, is what is g prime of 27? What is that equal to? Pause this video and try …
Flow of energy and matter through ecosystems | High school biology | Khan Academy
Let’s think a little bit about how energy flows and how matter is recycled in an ecosystem. So, the whole time that we go through this video, think about these two ideas. And then, even after watching this video, look at ecosystems around yourself, even o…