yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables.

How many trials do he have to take until he gets a success? Let M be the number of shots it takes Jeremiah to successfully make his first three-point shot.

Okay, so they're defining the random variable here: the number of shots it takes, the number of trials it takes until we get a successful three-point shot. Assume that the results of each shot are independent. All right, the probability that he makes a given shot is not dependent on whether he made or missed the previous shots.

Find the probability that Jeremiah's first successful shot occurs on his third attempt. So, like always, pause this video and see if you could have a go at it.

All right, now let's work through this together. So we want to find the probability that, so M is the number of shots it takes until Jeremiah makes his first successful one. What they're really asking is to find the probability that M is equal to 3, that his first successful shot occurs on his third attempt.

So M is equal to 3. So that the number of shots it takes Jeremiah, not me, to make a successful first shot is 3. So how do we do this?

Well, what's just the probability of that happening? Well, that means he has to miss his first two shots and then make his third shot. So what's the probability of him missing his first shot? Well, if he has a 1/4 chance of making his shots, he has a 3/4 chance of missing his shots. So this will be 3/4.

So he misses the first shot, times he has to miss the second shot, and then he has to make his third shot. So there you have it, that's the probability: miss, miss, make.

So what is this going to be? This is equal to nine over sixty-fourths. So there you have it. If you wanted to have this as a decimal, we could get a calculator out real fast. So this is nine—whoops—nine divided by 64 is equal to zero, roughly 0.14.

Approximately 0.14, or another way to think about it is roughly a fourteen percent chance, or fourteen percent probability that it takes him, that his first successful shot occurs in his third attempt.

More Articles

View All
Slow-Mo Hand in MOUSETRAP! ... And DONGs
Hey, Vsauce. Michael here on a couch with Vi Hart and Henry from MinutePhysics. Now, of all the people on this couch I probably have the least famous hands, but the most hairy. So here we go. My hand, a mouse trap and how about a phantom at 3,000 frames a…
Why were the Mongols so effective? | World History | Khan Academy
The question before us today is why were the Mongols so effective? How do they manage to take an area starting around here and over the course of 20 years, during the reign of Genghis Khan, from about 1206 to 1227, expand from this little part of Siberia,…
This 18th Century Gold Rush Changed How the World Pans for Gold | National Geographic
Gold is the most powerful metal on earth, and Russia is one of the world’s leading suppliers of it. It all began in 1745 when a peasant named Tiara Fade Markov, while looking for crystal, found something else: a tiny gold speck inside a piece of quartz. H…
Overview of ancient Greece | World History | Khan Academy
I am now going to give an overview of ancient Greece. In future videos, we’re going to go into a lot more depth on a lot of these events and ideas, but this one is to give you context on the big picture. Just to start, let’s begin with the name Greece. I…
Warren Buffett & Bill Gates - University of Washington
You ought to be happy where you are working, and I always worry about people who say, “You know, I’m going to do this for 10 years. I really don’t like it very well, and then I’ll do 10 more years of this.” I mean, that’s a little like saving up sex for y…
Misconceptions About Falling Objects
Let’s say Jack holds both balls above his head and then he drops them at exactly the same time. What do you expect to see? Well, they’re going to hit the ground at the same time. I expect them to both land at the same time. The same time, same time! This…