yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables.

How many trials do he have to take until he gets a success? Let M be the number of shots it takes Jeremiah to successfully make his first three-point shot.

Okay, so they're defining the random variable here: the number of shots it takes, the number of trials it takes until we get a successful three-point shot. Assume that the results of each shot are independent. All right, the probability that he makes a given shot is not dependent on whether he made or missed the previous shots.

Find the probability that Jeremiah's first successful shot occurs on his third attempt. So, like always, pause this video and see if you could have a go at it.

All right, now let's work through this together. So we want to find the probability that, so M is the number of shots it takes until Jeremiah makes his first successful one. What they're really asking is to find the probability that M is equal to 3, that his first successful shot occurs on his third attempt.

So M is equal to 3. So that the number of shots it takes Jeremiah, not me, to make a successful first shot is 3. So how do we do this?

Well, what's just the probability of that happening? Well, that means he has to miss his first two shots and then make his third shot. So what's the probability of him missing his first shot? Well, if he has a 1/4 chance of making his shots, he has a 3/4 chance of missing his shots. So this will be 3/4.

So he misses the first shot, times he has to miss the second shot, and then he has to make his third shot. So there you have it, that's the probability: miss, miss, make.

So what is this going to be? This is equal to nine over sixty-fourths. So there you have it. If you wanted to have this as a decimal, we could get a calculator out real fast. So this is nine—whoops—nine divided by 64 is equal to zero, roughly 0.14.

Approximately 0.14, or another way to think about it is roughly a fourteen percent chance, or fourteen percent probability that it takes him, that his first successful shot occurs in his third attempt.

More Articles

View All
Subtracting multi digit numbers with regrouping
[Instructor] What we’re gonna do in this video is figure out what 389,002 minus 76,151 is. Like always, I encourage you to pause the video and try to figure it out on your own. That’s the best way to really, even if you’re not able to figure out, or if …
Computing a tangent plane
Hey guys! So, in the last video, I was talking about how you can define a function whose graph is a plane, and moreover, a plane that passes through a specified point and whose orientation you can somehow specify. We ended up seeing how specifying that or…
Gen-Z Beating Millennials In Crypto?! | Ft. Josh Richards
[Music] All right, so it’s Marshall, Mr. Wonderful, Josh, and Ben. Now, we’re all here to talk about multiple things, but mostly about investing. Now, you guys have a new fund. We do! Let’s talk about that. What is the purpose of the fund? Sure, and I t…
Hiroshi Mikitani at Startup School 2012
Thank you for coming. Thank you very much for inviting so many people. There’s a lot of people, so maybe to start, you could just tell us a little bit about what Rakuten is and how you got started. Okay, so I founded it in Japan in 1997, as a matter of f…
Solving unit price problem
We’re told that Nieria earns $75 for four hours of tutoring. How much does Nieria earn for one hour of tutoring? Pause this video and see if you can figure that out. Well, the key here is $75 for four hours of tutoring. There’s a couple of ways you could…
2004 Berkshire Hathaway Annual Meeting (Full Version)
Thank you. Good morning. Some of you may have noticed a stuntman was used in that. Arnold just couldn’t handle some of those scenes. Before we get started, I’d especially like to thank Andy Hayward, who’s here today, and if we can, no way we can find him …