yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables.

How many trials do he have to take until he gets a success? Let M be the number of shots it takes Jeremiah to successfully make his first three-point shot.

Okay, so they're defining the random variable here: the number of shots it takes, the number of trials it takes until we get a successful three-point shot. Assume that the results of each shot are independent. All right, the probability that he makes a given shot is not dependent on whether he made or missed the previous shots.

Find the probability that Jeremiah's first successful shot occurs on his third attempt. So, like always, pause this video and see if you could have a go at it.

All right, now let's work through this together. So we want to find the probability that, so M is the number of shots it takes until Jeremiah makes his first successful one. What they're really asking is to find the probability that M is equal to 3, that his first successful shot occurs on his third attempt.

So M is equal to 3. So that the number of shots it takes Jeremiah, not me, to make a successful first shot is 3. So how do we do this?

Well, what's just the probability of that happening? Well, that means he has to miss his first two shots and then make his third shot. So what's the probability of him missing his first shot? Well, if he has a 1/4 chance of making his shots, he has a 3/4 chance of missing his shots. So this will be 3/4.

So he misses the first shot, times he has to miss the second shot, and then he has to make his third shot. So there you have it, that's the probability: miss, miss, make.

So what is this going to be? This is equal to nine over sixty-fourths. So there you have it. If you wanted to have this as a decimal, we could get a calculator out real fast. So this is nine—whoops—nine divided by 64 is equal to zero, roughly 0.14.

Approximately 0.14, or another way to think about it is roughly a fourteen percent chance, or fourteen percent probability that it takes him, that his first successful shot occurs in his third attempt.

More Articles

View All
Big Data by the Numbers | Explorer
I’m Richard Bacon. Let’s talk about surveillance. But let’s do it quietly because they’re probably listening. That thing in your pocket that you call a smartphone, it’s a tracking device that just happens to make calls. Digital tracking has become a part …
Trump-Putin call puts Ukraine in unfavorable position ahead of peace talks
It finally happened: US president Donald Trump held his first official phone call with Russian President Vladimir Putin after re-entering office, and as many feared for months, things look bad for Ukraine. Having run his campaign on the promise to end Rus…
Homeroom with Sal & Randi Weingarten - Tuesday, August 4
Uh hi everyone, welcome to our homeroom live stream. Sal Khan here from Khan Academy. I’m very excited about the very relevant guest we have today, Randy Weingarten, president of the American Federation of Teachers. Before we jump into that conversation, …
Warren Buffett: How You Need to Be Investing in 2024
If you want the ability to build generational wealth and the financial freedom to retire early and leave the unending corporate rat race, you should be listening to Warren Buffett’s most recent investing advice. For the better part of the last year, lege…
Why self improvement is ruining your life
One of the best feelings in the entire world is the feeling of getting better at the things that you’re interested in. You know, if you’re starting to get into the gym, it feels really good to actually see yourself getting stronger, whether that’s visuall…
DO THIS To Turn $30,000 Into $3,000,000! | Kevin O'Leary & Sam Sheffer
[Music] Hey everybody, Mr. Wonderful here with another episode of Ask Mr. Wonderful. You know I gotta be honest with you, it’s my favorite show! I love it because it’s your questions that make it happen. And today we’re gonna take a little drive down a te…