yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables.

How many trials do he have to take until he gets a success? Let M be the number of shots it takes Jeremiah to successfully make his first three-point shot.

Okay, so they're defining the random variable here: the number of shots it takes, the number of trials it takes until we get a successful three-point shot. Assume that the results of each shot are independent. All right, the probability that he makes a given shot is not dependent on whether he made or missed the previous shots.

Find the probability that Jeremiah's first successful shot occurs on his third attempt. So, like always, pause this video and see if you could have a go at it.

All right, now let's work through this together. So we want to find the probability that, so M is the number of shots it takes until Jeremiah makes his first successful one. What they're really asking is to find the probability that M is equal to 3, that his first successful shot occurs on his third attempt.

So M is equal to 3. So that the number of shots it takes Jeremiah, not me, to make a successful first shot is 3. So how do we do this?

Well, what's just the probability of that happening? Well, that means he has to miss his first two shots and then make his third shot. So what's the probability of him missing his first shot? Well, if he has a 1/4 chance of making his shots, he has a 3/4 chance of missing his shots. So this will be 3/4.

So he misses the first shot, times he has to miss the second shot, and then he has to make his third shot. So there you have it, that's the probability: miss, miss, make.

So what is this going to be? This is equal to nine over sixty-fourths. So there you have it. If you wanted to have this as a decimal, we could get a calculator out real fast. So this is nine—whoops—nine divided by 64 is equal to zero, roughly 0.14.

Approximately 0.14, or another way to think about it is roughly a fourteen percent chance, or fourteen percent probability that it takes him, that his first successful shot occurs in his third attempt.

More Articles

View All
Woman Struck by Meteorite | Smarter Every Day 84
Hey, it’s me, Destin. Welcome back to Smarter Every Day! So, you probably didn’t know that Alabama has its own Museum of Natural History. We also have the only meteorite to ever strike a human being. You want to check it out? It’s known as the Hodes meteo…
Example dividing a whole by a unit fraction
Let’s think about what 3 divided by 1⁄4 is equal to. Pause this video and see if you can figure it out on your own. And I’ll give you a hint: take three holes and divide it into pieces, or sections, that are each one-fourth of a hole. Then think about how…
2015 AP Physics 1 free response 1c
Let’s now tackle part C. They tell us block three of mass m sub 3, so that’s right over here, is added to the system, as shown below. There is no friction between block three and the table. All right, indicate whether the magnitude of the acceleration of …
Conservation of energy | Physics | Khan Academy
We place a ball on this ramp, and we want to now figure out what happens to the speed of the ball as it goes forward. If you try to do this using forces and accelerations, it’s going to be really tough. But instead, we’re going to use energy conservation …
Protecting a Flamingo Paradise | Incredible Animal Journeys | National Geographic
When we set out to film this series, we knew that we’d face some challenges along the way, but nothing compares to what the wildlife is up against. Animal journeys formed over thousands of years are in real danger. [Music] Physical barriers, disorientat…
Representing points in 3d | Multivariable calculus | Khan Academy
So, a lot of the ways that we represent multivariable functions assume that you’re fluent with understanding how to represent points in three dimensions and also how to represent vectors in three dimensions. So, I thought I’d make a little video here to …