yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables.

How many trials do he have to take until he gets a success? Let M be the number of shots it takes Jeremiah to successfully make his first three-point shot.

Okay, so they're defining the random variable here: the number of shots it takes, the number of trials it takes until we get a successful three-point shot. Assume that the results of each shot are independent. All right, the probability that he makes a given shot is not dependent on whether he made or missed the previous shots.

Find the probability that Jeremiah's first successful shot occurs on his third attempt. So, like always, pause this video and see if you could have a go at it.

All right, now let's work through this together. So we want to find the probability that, so M is the number of shots it takes until Jeremiah makes his first successful one. What they're really asking is to find the probability that M is equal to 3, that his first successful shot occurs on his third attempt.

So M is equal to 3. So that the number of shots it takes Jeremiah, not me, to make a successful first shot is 3. So how do we do this?

Well, what's just the probability of that happening? Well, that means he has to miss his first two shots and then make his third shot. So what's the probability of him missing his first shot? Well, if he has a 1/4 chance of making his shots, he has a 3/4 chance of missing his shots. So this will be 3/4.

So he misses the first shot, times he has to miss the second shot, and then he has to make his third shot. So there you have it, that's the probability: miss, miss, make.

So what is this going to be? This is equal to nine over sixty-fourths. So there you have it. If you wanted to have this as a decimal, we could get a calculator out real fast. So this is nine—whoops—nine divided by 64 is equal to zero, roughly 0.14.

Approximately 0.14, or another way to think about it is roughly a fourteen percent chance, or fourteen percent probability that it takes him, that his first successful shot occurs in his third attempt.

More Articles

View All
Mr. Freeman, part 59
Have you noticed what happened to words? What are you saying there, again? Ew-w-w! Your words seem to have decayed! Spoiled! Well, they still look and sound the same, but you know, what is the problem? THEY MEAN BUGGER ALL!!! Look for yourself. At some p…
Crystalline and amorphous polymers | AP Chemistry | Khan Academy
Let’s talk a little bit about crystalline and amorphous polymers. Now, in previous videos we talked about crystalline versus amorphous solids. Crystalline solids have a very regular pattern; maybe they look something like this if you imagine the particle…
The FASTEST Way To Pay Off Debt
What’s up guys, it’s Graham here! So we’re gonna be starting this video off with some very scary statistics. I hope you’re sitting down; you’ve been warned because this is getting out of hand. The average American is now up to thirty-eight thousand dolla…
Khan Lab School
Hi everyone, Sal Khan here. I just wanted to tell y’all that we’ve reached kind of several really cool milestones at Khan Lab School, which you can learn more about at khanlabschool.org or kls.org. A lot of folks are surprised to hear that I started a ph…
Division in context examples
We are asked which problem can we solve with 42 divided by seven, and they explain three different scenarios. Here, we need to pick one of them, so pause this video and have a go at it before we work through it together. All right, now let’s work through…
RC step response - intuition
In this video, we’re going to introduce the idea of a step response. This is one of the most common occurrences in all of electronics, and it happens anytime there’s some resistance and some capacitance in series. In particular, it happens billions of tim…