yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables.

How many trials do he have to take until he gets a success? Let M be the number of shots it takes Jeremiah to successfully make his first three-point shot.

Okay, so they're defining the random variable here: the number of shots it takes, the number of trials it takes until we get a successful three-point shot. Assume that the results of each shot are independent. All right, the probability that he makes a given shot is not dependent on whether he made or missed the previous shots.

Find the probability that Jeremiah's first successful shot occurs on his third attempt. So, like always, pause this video and see if you could have a go at it.

All right, now let's work through this together. So we want to find the probability that, so M is the number of shots it takes until Jeremiah makes his first successful one. What they're really asking is to find the probability that M is equal to 3, that his first successful shot occurs on his third attempt.

So M is equal to 3. So that the number of shots it takes Jeremiah, not me, to make a successful first shot is 3. So how do we do this?

Well, what's just the probability of that happening? Well, that means he has to miss his first two shots and then make his third shot. So what's the probability of him missing his first shot? Well, if he has a 1/4 chance of making his shots, he has a 3/4 chance of missing his shots. So this will be 3/4.

So he misses the first shot, times he has to miss the second shot, and then he has to make his third shot. So there you have it, that's the probability: miss, miss, make.

So what is this going to be? This is equal to nine over sixty-fourths. So there you have it. If you wanted to have this as a decimal, we could get a calculator out real fast. So this is nine—whoops—nine divided by 64 is equal to zero, roughly 0.14.

Approximately 0.14, or another way to think about it is roughly a fourteen percent chance, or fourteen percent probability that it takes him, that his first successful shot occurs in his third attempt.

More Articles

View All
Templating a contract with variables | Intro to CS - Python | Khan Academy
Let’s work together on a program that uses variables and user input. Here’s the problem I’m trying to solve: my friend Deshawn has a catering business, and for each catering job that he takes, he needs to write up a contract between him and the client. Ev…
How to Sell by Tyler Bosmeny
All right, good morning everyone! We are halfway through Startup School. Can you believe it already? Wow! Yeah, or more correctly we will be after this week. This is going to be a great week of talks, lectures, conversations. Today we have Tyler from Clev…
Infinite limits and asymptotes | Limits and continuity | AP Calculus AB | Khan Academy
What we’re going to do in this video is use the online graphing calculator Desmos and explore the relationship between vertical and horizontal asymptotes and think about how they relate to what we know about limits. So let’s first graph ( \frac{2}{x - 1}…
15 Things You Didn't Know About GUCCI
Fifteen things you didn’t know about Gucci. Welcome to A Luxe Calm, the place where future billionaires come to get inspired. Hello, A Luxor’s, and welcome back to another fantastic video! Thanks to the huge response to our high-end fashion videos, we’ve …
Creativity break: how can students expand their creativity in biology? | Khan Academy
[Music] I’d encourage every single one of you to spend some time immersed in a different culture or maybe even spend some time working in a totally different part of the world from where you grew up. Now, it doesn’t have to be quite that drastic; it coul…
User input | Intro to CS - Python | Khan Academy
What are some of the ways you interact with digital technology every day? You might press a button, enter something into a text box, or swipe up or down. You might even move a joystick on a controller, tap a credit card, or turn a knob on a car. These are…