yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables.

How many trials do he have to take until he gets a success? Let M be the number of shots it takes Jeremiah to successfully make his first three-point shot.

Okay, so they're defining the random variable here: the number of shots it takes, the number of trials it takes until we get a successful three-point shot. Assume that the results of each shot are independent. All right, the probability that he makes a given shot is not dependent on whether he made or missed the previous shots.

Find the probability that Jeremiah's first successful shot occurs on his third attempt. So, like always, pause this video and see if you could have a go at it.

All right, now let's work through this together. So we want to find the probability that, so M is the number of shots it takes until Jeremiah makes his first successful one. What they're really asking is to find the probability that M is equal to 3, that his first successful shot occurs on his third attempt.

So M is equal to 3. So that the number of shots it takes Jeremiah, not me, to make a successful first shot is 3. So how do we do this?

Well, what's just the probability of that happening? Well, that means he has to miss his first two shots and then make his third shot. So what's the probability of him missing his first shot? Well, if he has a 1/4 chance of making his shots, he has a 3/4 chance of missing his shots. So this will be 3/4.

So he misses the first shot, times he has to miss the second shot, and then he has to make his third shot. So there you have it, that's the probability: miss, miss, make.

So what is this going to be? This is equal to nine over sixty-fourths. So there you have it. If you wanted to have this as a decimal, we could get a calculator out real fast. So this is nine—whoops—nine divided by 64 is equal to zero, roughly 0.14.

Approximately 0.14, or another way to think about it is roughly a fourteen percent chance, or fourteen percent probability that it takes him, that his first successful shot occurs in his third attempt.

More Articles

View All
What Truly Matters To A Stoic
Hello everyone and welcome! This is the seventh edition already of the Einzelgänger Q&A. A while ago, I got a question from a follower named Sofia, below my video about Stoicism and not giving a… you know what. This particular video is about caring le…
The Rise and Fall of Reddit
The meme stock trading trend, with its Wall Street bets form, reached a 10 billion dollar valuation in its latest funding round. The company says it has already raised more than 400 million dollars from Fidelity and plans to raise up to 700 million dollar…
Strategy in finding limits | Limits and continuity | AP Calculus AB | Khan Academy
Multiple videos and exercises we cover the various techniques for finding limits, but sometimes it’s helpful to think about strategies for determining which technique to use, and that’s what we’re going to cover in this video. What you see here is a flowc…
Power Under Pressure: Getting it Done (Clip) | Alaska: The Next Generation
Here we go. That’s basically it, and that’ll be the reel system to reel all the line in as that sled goes up. All that’s left to do is to string up the cordage. I gotta couple strands of cord and going to replace that other cordage I was using because tha…
Kevin O'Leary REACTS To Graham Stephan's $10 MILLION DOLLAR Investment Portfolio
A lot of people don’t understand how debt can put you out of business if things go wrong. Imagine being in your 40s and being wiped out, having to go bankrupt. So, I want you to react to something. Sure. I have my entire portfolio—worth a little bit over…
Michael Burry's $574,000,000 Missed GameStop Opportunity
Oh my lord, ah, today we are talking about literally every investor’s worst nightmare, because you guys know Michael Burry, the guy from The Big Short. I’ve been talking about him quite a bit recently on the channel. He has just experienced this nightmare…