yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables.

How many trials do he have to take until he gets a success? Let M be the number of shots it takes Jeremiah to successfully make his first three-point shot.

Okay, so they're defining the random variable here: the number of shots it takes, the number of trials it takes until we get a successful three-point shot. Assume that the results of each shot are independent. All right, the probability that he makes a given shot is not dependent on whether he made or missed the previous shots.

Find the probability that Jeremiah's first successful shot occurs on his third attempt. So, like always, pause this video and see if you could have a go at it.

All right, now let's work through this together. So we want to find the probability that, so M is the number of shots it takes until Jeremiah makes his first successful one. What they're really asking is to find the probability that M is equal to 3, that his first successful shot occurs on his third attempt.

So M is equal to 3. So that the number of shots it takes Jeremiah, not me, to make a successful first shot is 3. So how do we do this?

Well, what's just the probability of that happening? Well, that means he has to miss his first two shots and then make his third shot. So what's the probability of him missing his first shot? Well, if he has a 1/4 chance of making his shots, he has a 3/4 chance of missing his shots. So this will be 3/4.

So he misses the first shot, times he has to miss the second shot, and then he has to make his third shot. So there you have it, that's the probability: miss, miss, make.

So what is this going to be? This is equal to nine over sixty-fourths. So there you have it. If you wanted to have this as a decimal, we could get a calculator out real fast. So this is nine—whoops—nine divided by 64 is equal to zero, roughly 0.14.

Approximately 0.14, or another way to think about it is roughly a fourteen percent chance, or fourteen percent probability that it takes him, that his first successful shot occurs in his third attempt.

More Articles

View All
Productize Yourself
You summarized this entire tweet storm with two words: productize yourself. Productize and yourself. Yourself has uniqueness; productize has leverage. Yourself has accountability; productize has specific knowledge. Yourself also has specific knowledge in…
What is the Shortest Poem?
Hey, Vsauce. Michael here. I am in Green Bank, West Virginia. Pocahontas County. And my favorite word is … I learned it from Big Bird, and it’s not so much a word as the alphabet, if you try to pronounce it like a word. It’s a neat trick, almost poetic. B…
Dangerous Economic Policies: This Will Destroy the American Dream!
Don’t mess with the American Dream. There’s a reason people go through barbwire to try and get in here. We don’t want to set a policy up where they’re trying to get out of America. Let’s go ahead and bring in Kevin O. He’s the chairman of O Ventures and …
Life's Biggest Lessons
There’s nothing worse than a sleepless night. We’ve all been there, tossing and turning. You focus all your mental power on trying to fall asleep. With all your will, you force yourself to shut your eyes, turn your brain off, and pray to be whisked away i…
Facebook Fraud
Have you heard of Virtual Bagel? Their Facebook page has over 4,000 likes. They use the page to promote their brilliant business model: “we send you bagels via the Internet – just download and enjoy.” It sounds like a joke, and it is, sort of. This page w…
Drew Houston : How to Build the Future
Hi, I’m Sam Alden. This is “How to Build the Future.” Our guest today is Drew Houston. Thank you for taking the time. Thanks for having me! So, you were in Y Combinator with Dropbox in the summer of 2007? That’s right. How did you come up with the ide…