yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables.

How many trials do he have to take until he gets a success? Let M be the number of shots it takes Jeremiah to successfully make his first three-point shot.

Okay, so they're defining the random variable here: the number of shots it takes, the number of trials it takes until we get a successful three-point shot. Assume that the results of each shot are independent. All right, the probability that he makes a given shot is not dependent on whether he made or missed the previous shots.

Find the probability that Jeremiah's first successful shot occurs on his third attempt. So, like always, pause this video and see if you could have a go at it.

All right, now let's work through this together. So we want to find the probability that, so M is the number of shots it takes until Jeremiah makes his first successful one. What they're really asking is to find the probability that M is equal to 3, that his first successful shot occurs on his third attempt.

So M is equal to 3. So that the number of shots it takes Jeremiah, not me, to make a successful first shot is 3. So how do we do this?

Well, what's just the probability of that happening? Well, that means he has to miss his first two shots and then make his third shot. So what's the probability of him missing his first shot? Well, if he has a 1/4 chance of making his shots, he has a 3/4 chance of missing his shots. So this will be 3/4.

So he misses the first shot, times he has to miss the second shot, and then he has to make his third shot. So there you have it, that's the probability: miss, miss, make.

So what is this going to be? This is equal to nine over sixty-fourths. So there you have it. If you wanted to have this as a decimal, we could get a calculator out real fast. So this is nine—whoops—nine divided by 64 is equal to zero, roughly 0.14.

Approximately 0.14, or another way to think about it is roughly a fourteen percent chance, or fourteen percent probability that it takes him, that his first successful shot occurs in his third attempt.

More Articles

View All
2015 AP Calculus AB/BC 4cd | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Part C: Let y equals f of x be the particular solution to the differential equation, with the initial condition f of two is equal to three. Does f have a relative minimum, a relative maximum, or neither at x equals 2? Justify your answer. Well, to think …
Interpreting line plots
We’re told that the weights of 11 different babies are recorded in the line plot below, and we see there’s one, two, three, four, five, six, seven, eight, nine, ten, eleven data points; each one represents a different baby whose weight is recorded. Each w…
Correcting a Dachshund's Bad Habit | Cesar Millan: Better Human Better Dog
All right, so this is the final challenge. It’s a sick sack of obstacles. Caesar works with Millie, a seven-month-old dachshund, whose habit of eating trash off the ground could have lethal consequences. This is serious; this dog can actually get hurt. Ca…
IDENTITY SHIFTING YOUR NEW WAY TO REINVENT YOURSELF | MARCUS AURELIUS | STOICISM INSIGHTS
Hello Stoicism Insights community, and welcome back to our channel. Today we’re about to embark on a journey that promises not just to challenge your thinking, but to revolutionize the very way you approach life. Picture this. What if I told you that wit…
I Know What Trump Feels Like After The Assassination Attempt
And it was very scary. So I know what Trump feels like today. I ran for Prime Minister of Canada in, um, 2016. I decided to run for it, and my wife thought I was nuts, but I just felt I wanted to give it a shot, okay? I had never done politics before. Ca…
Review of revenue and cost graphs for a monopoly | Microeconomics | Khan Academy
What I want to do in this video is review a little bit of what we’ve learned about monopolies and in the process get a better understanding for some of the graphical representations which we have talked about in the past. But I want to put it all togethe…