yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables.

How many trials do he have to take until he gets a success? Let M be the number of shots it takes Jeremiah to successfully make his first three-point shot.

Okay, so they're defining the random variable here: the number of shots it takes, the number of trials it takes until we get a successful three-point shot. Assume that the results of each shot are independent. All right, the probability that he makes a given shot is not dependent on whether he made or missed the previous shots.

Find the probability that Jeremiah's first successful shot occurs on his third attempt. So, like always, pause this video and see if you could have a go at it.

All right, now let's work through this together. So we want to find the probability that, so M is the number of shots it takes until Jeremiah makes his first successful one. What they're really asking is to find the probability that M is equal to 3, that his first successful shot occurs on his third attempt.

So M is equal to 3. So that the number of shots it takes Jeremiah, not me, to make a successful first shot is 3. So how do we do this?

Well, what's just the probability of that happening? Well, that means he has to miss his first two shots and then make his third shot. So what's the probability of him missing his first shot? Well, if he has a 1/4 chance of making his shots, he has a 3/4 chance of missing his shots. So this will be 3/4.

So he misses the first shot, times he has to miss the second shot, and then he has to make his third shot. So there you have it, that's the probability: miss, miss, make.

So what is this going to be? This is equal to nine over sixty-fourths. So there you have it. If you wanted to have this as a decimal, we could get a calculator out real fast. So this is nine—whoops—nine divided by 64 is equal to zero, roughly 0.14.

Approximately 0.14, or another way to think about it is roughly a fourteen percent chance, or fourteen percent probability that it takes him, that his first successful shot occurs in his third attempt.

More Articles

View All
Snake vs. Roadrunner Face-off | National Geographic
[mysterious music] NARRATOR: The tongue of western diamondback rattlesnake cautiously tastes the air. She flicks airborne particles against the roof of her mouth to be analyzed, sorting out potential food from potential threat, like this other icon of th…
Jane Goodall: The Hope – Trailer | National Geographic
Ladies and gentlemen, you are in for a special treat tonight: Dr. Jane Goodall. I’m a huge fan. I hate how people think of her as being associated with chimpanzees only, but actually, she’s much more than that. All these young people looking at her like s…
The Problem with Super Chickens | Podcast | Overheard at National Geographic
Let’s start with the riddle. Picture a long flat building in rural Indiana, surrounded by corn and soybean fields. There are thousands of chickens inside. Oh my goodness, it was a lot of noise! They’re calling under the rooster sounds and copper glue. Tha…
Techno Optimism, Explained
I cannot wait for the day where my daughter and son say, “Oh, 45 minutes to Tokyo? That’s so slow!” I can’t wait. Hello, this is Dalton, post-Michael, and today we’re going to talk about why we are optimistic about the future. So, to be clear, at YC, we…
The Oldest Unsolved Problem in Math
This is a video about the oldest unsolved problem in math that dates back 2000 years. Some of the brightest mathematicians of all time have tried to crack it, but all of them failed. In the year 2000, the Italian mathematician Piergiorgio Odifreddi listed…
8 Most Important Lessons from the 2022 Berkshire Hathaway Annual Meeting
Every year, 40,000 people travel to Omaha, Nebraska to listen to investing legends Warren Buffett and Charlie Munger speak. They share their thoughts on practically everything, from what they see going on in the stock market and in the economy, all the wa…