yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables.

How many trials do he have to take until he gets a success? Let M be the number of shots it takes Jeremiah to successfully make his first three-point shot.

Okay, so they're defining the random variable here: the number of shots it takes, the number of trials it takes until we get a successful three-point shot. Assume that the results of each shot are independent. All right, the probability that he makes a given shot is not dependent on whether he made or missed the previous shots.

Find the probability that Jeremiah's first successful shot occurs on his third attempt. So, like always, pause this video and see if you could have a go at it.

All right, now let's work through this together. So we want to find the probability that, so M is the number of shots it takes until Jeremiah makes his first successful one. What they're really asking is to find the probability that M is equal to 3, that his first successful shot occurs on his third attempt.

So M is equal to 3. So that the number of shots it takes Jeremiah, not me, to make a successful first shot is 3. So how do we do this?

Well, what's just the probability of that happening? Well, that means he has to miss his first two shots and then make his third shot. So what's the probability of him missing his first shot? Well, if he has a 1/4 chance of making his shots, he has a 3/4 chance of missing his shots. So this will be 3/4.

So he misses the first shot, times he has to miss the second shot, and then he has to make his third shot. So there you have it, that's the probability: miss, miss, make.

So what is this going to be? This is equal to nine over sixty-fourths. So there you have it. If you wanted to have this as a decimal, we could get a calculator out real fast. So this is nine—whoops—nine divided by 64 is equal to zero, roughly 0.14.

Approximately 0.14, or another way to think about it is roughly a fourteen percent chance, or fourteen percent probability that it takes him, that his first successful shot occurs in his third attempt.

More Articles

View All
5 Websites I use as a Value Investor
[Music] Hey guys, welcome back to the channel! In this video, uh, coming at you from my computer today because a common question that I get from a lot of you guys is what websites am I going to to kind of source all my information and what you know websit…
Introduction to life insurance | Insurance | Financial literacy | Khan Academy
So let’s talk a little bit about what’s probably not your favorite subject. It’s definitely not mine, and that is death. Uh, and uh, it’s not something a lot of us think about. I remember when I was a kid and I used to see these ads on TV for life insuran…
Living With Mongolian Nomads | Best Job Ever
[Music] I’m in Mongolia to discover what it means to be a modern-day nomad. Wrestling is traditional in Mongolia. You know, was it physically difficult? Yes. Was I scared? Yes. Did I lose? I was slaughtered. What made it special was, at the end of that w…
Performing a rotation to match figures
Use one rotation to map quadrilateral ABCD to the other quadrilateral. So to map this one to this one right over here, use a number between 0 and 360° to describe the angle. Counterclockwise is positive, so you’re going to want to move it counterclockwise…
Introduction to the semicolon | The Colon and semicolon | Punctuation | Khan Academy
Hello, Garans. In this video, I’m going to tell you about a piece of punctuation called the semicolon, which basically looks like a comma with a period on top of it. The semicolon has a few uses, but the basic sort of standard use is to link two closely r…
Worked example: Parametric arc length | AP Calculus BC | Khan Academy
Let’s say that X is a function of the parameter T, and it’s equal to cosine of T, and Y is also defined as a function of T, and it’s equal to sine of T. We want to find the arc length of the curve traced out, so the length of the curve from T equals 0 to …