yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables.

How many trials do he have to take until he gets a success? Let M be the number of shots it takes Jeremiah to successfully make his first three-point shot.

Okay, so they're defining the random variable here: the number of shots it takes, the number of trials it takes until we get a successful three-point shot. Assume that the results of each shot are independent. All right, the probability that he makes a given shot is not dependent on whether he made or missed the previous shots.

Find the probability that Jeremiah's first successful shot occurs on his third attempt. So, like always, pause this video and see if you could have a go at it.

All right, now let's work through this together. So we want to find the probability that, so M is the number of shots it takes until Jeremiah makes his first successful one. What they're really asking is to find the probability that M is equal to 3, that his first successful shot occurs on his third attempt.

So M is equal to 3. So that the number of shots it takes Jeremiah, not me, to make a successful first shot is 3. So how do we do this?

Well, what's just the probability of that happening? Well, that means he has to miss his first two shots and then make his third shot. So what's the probability of him missing his first shot? Well, if he has a 1/4 chance of making his shots, he has a 3/4 chance of missing his shots. So this will be 3/4.

So he misses the first shot, times he has to miss the second shot, and then he has to make his third shot. So there you have it, that's the probability: miss, miss, make.

So what is this going to be? This is equal to nine over sixty-fourths. So there you have it. If you wanted to have this as a decimal, we could get a calculator out real fast. So this is nine—whoops—nine divided by 64 is equal to zero, roughly 0.14.

Approximately 0.14, or another way to think about it is roughly a fourteen percent chance, or fourteen percent probability that it takes him, that his first successful shot occurs in his third attempt.

More Articles

View All
What can I do to protect my devices?
Mark, I’m pretty convinced that I need to protect my devices from other folks. How should I think about that? How does one protect their device? Yeah. The first piece is really taking what the manufacturers and the companies behind them are giving you. S…
Quantum Entanglement & Spooky Action at a Distance
In the 1930s, Albert Einstein was upset with quantum mechanics. He proposed the thought experiment where, according to the theory, an event at one point in the universe could instantaneously affect another event arbitrarily far away. He called this spooky…
How the Mojave Desert Compares to Mars | National Geographic
Exploration is a compulsory human trait. We’re the only animal on the planet driven so deeply by curiosity. From the surface of the Earth, the ocean floor, to space. Humans have an insatiable desire for adventure and exploration. These days we’ve been tu…
Representing systems of equations with matrices | Matrices | Precalculus | Khan Academy
I’m a big fan of looking at the same problem in different ways or different ways to conceptualize them. For example, if I had a system of three equations with three unknowns, let me just make one up: Three x minus two y minus z is equal to negative one. …
Who are the Water Mafia | Parched
[busy street sounds] [rhythmic music playing] AMAN SETHI: Everyone buys water from the water mafia– the rich, the poor, the middle class. That’s because Delhi and its surroundings have about 24 million people. And anywhere between 30% to 40% don’t have a…
Dalton Caldwell's Whale AMA
Right now I’m interested in things like food, transportation, housing—the stuff that every person spends a huge percentage of their paycheck on every month. Um, if you look at how much value has been unlocked by things like Uber and Airbnb, I think there …