yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables.

How many trials do he have to take until he gets a success? Let M be the number of shots it takes Jeremiah to successfully make his first three-point shot.

Okay, so they're defining the random variable here: the number of shots it takes, the number of trials it takes until we get a successful three-point shot. Assume that the results of each shot are independent. All right, the probability that he makes a given shot is not dependent on whether he made or missed the previous shots.

Find the probability that Jeremiah's first successful shot occurs on his third attempt. So, like always, pause this video and see if you could have a go at it.

All right, now let's work through this together. So we want to find the probability that, so M is the number of shots it takes until Jeremiah makes his first successful one. What they're really asking is to find the probability that M is equal to 3, that his first successful shot occurs on his third attempt.

So M is equal to 3. So that the number of shots it takes Jeremiah, not me, to make a successful first shot is 3. So how do we do this?

Well, what's just the probability of that happening? Well, that means he has to miss his first two shots and then make his third shot. So what's the probability of him missing his first shot? Well, if he has a 1/4 chance of making his shots, he has a 3/4 chance of missing his shots. So this will be 3/4.

So he misses the first shot, times he has to miss the second shot, and then he has to make his third shot. So there you have it, that's the probability: miss, miss, make.

So what is this going to be? This is equal to nine over sixty-fourths. So there you have it. If you wanted to have this as a decimal, we could get a calculator out real fast. So this is nine—whoops—nine divided by 64 is equal to zero, roughly 0.14.

Approximately 0.14, or another way to think about it is roughly a fourteen percent chance, or fourteen percent probability that it takes him, that his first successful shot occurs in his third attempt.

More Articles

View All
Everyone Is Wrong About Bitcoin: “Have Fun Staying Poor!”
That’s going to zero. That’s going to zero. This is going to zero too. Euros are going to zero. The Yen’s going to zero. The Chinese currency is going to zero. It’s all going to zero against Bitcoin. It’s worthless artificial gold. I would short it if the…
Worked example: differentiating polar functions | AP Calculus BC | Khan Academy
Let r be the function given by r if theta is equal to three theta sine theta for theta is between zero and two pi, including zero and two pi. The graph of r in polar coordinates consists of two loops, as shown in the figure above. So let’s think about wh…
Sales pre-PMF should be done by the founders.
If you’re the founder of an early stage startup and you’re building a product that you’re hoping other businesses will buy, you are capable of selling it. That’s the good news. The bad news is that you’re probably the only person capable of selling your p…
Ray Dalio: We're Already in Another Depression
So I was recently listening to a TED talk with Ray Dalio about the current state of the global economy, and I was really surprised that Ray was quite confident in the idea that we are in the start of another depression very similar to what we saw in 1929.…
Ecological succession | Biodiversity and human impacts | High school biology | Khan Academy
You look at a community that is in a given habitat. A natural question is to say, “Well, has that community always been that way? Has it always been there? Was there a time where maybe there was no life there?” And the answer is, well, yes, the communitie…
The Book Bush Was Reading on 9/11
I’m often asked why I have this book. Well, this book is a piece of American History. It is the book that George W. Bush was reading when 9⁄11 happened. That morning, he was at M. E. Booker Elementary School in Sarasota, Florida, following along as studen…