yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables.

How many trials do he have to take until he gets a success? Let M be the number of shots it takes Jeremiah to successfully make his first three-point shot.

Okay, so they're defining the random variable here: the number of shots it takes, the number of trials it takes until we get a successful three-point shot. Assume that the results of each shot are independent. All right, the probability that he makes a given shot is not dependent on whether he made or missed the previous shots.

Find the probability that Jeremiah's first successful shot occurs on his third attempt. So, like always, pause this video and see if you could have a go at it.

All right, now let's work through this together. So we want to find the probability that, so M is the number of shots it takes until Jeremiah makes his first successful one. What they're really asking is to find the probability that M is equal to 3, that his first successful shot occurs on his third attempt.

So M is equal to 3. So that the number of shots it takes Jeremiah, not me, to make a successful first shot is 3. So how do we do this?

Well, what's just the probability of that happening? Well, that means he has to miss his first two shots and then make his third shot. So what's the probability of him missing his first shot? Well, if he has a 1/4 chance of making his shots, he has a 3/4 chance of missing his shots. So this will be 3/4.

So he misses the first shot, times he has to miss the second shot, and then he has to make his third shot. So there you have it, that's the probability: miss, miss, make.

So what is this going to be? This is equal to nine over sixty-fourths. So there you have it. If you wanted to have this as a decimal, we could get a calculator out real fast. So this is nine—whoops—nine divided by 64 is equal to zero, roughly 0.14.

Approximately 0.14, or another way to think about it is roughly a fourteen percent chance, or fourteen percent probability that it takes him, that his first successful shot occurs in his third attempt.

More Articles

View All
Credentials don’t matter
Smart people, capable people, don’t let themselves be pigeonholed into one definition. That is a disease of credentialism. Because we created this university, now you’ve got to go to university, and you’ve got to get a degree in something. Then people say…
Watch One Family's Journey Through A Life-Changing Face Transplant | National Geographic
I love you. You just make sure you have to be dreams, okay? That’s ever. I love you. We’re just outside the door. You’re a great hand into the best. All right, okay? We invent the wrong McDonald’s house as a last week. Two years, there’s so many different…
10 Good Problems You Want To Have
Everybody’s got problems, but you know not all problems are the same. There are some problems you actually want to have because they’re the indicator of a good life. When you take things for granted, you forget the good things that life has offered you. …
See How America Celebrated the 2017 Total Solar Eclipse | National Geographic
Three McCrory here, Michael brush go Anjali. And here I am in Nashville, Tennessee, at the Adventure Science Center. Madisonville, Tennessee, at Sally Knox Vineyard. So we are at the Wilson County Fair here in Lebanon, Tennessee, here at NatGeo in Washin…
Free Markets Provide the Best Feedback
Mark Andreessen summarizes this nicely as “strong opinions loosely held.” So, as a society, if you’re truth-seeking, you want to have strong opinions but very loosely held. You want to try them, see if they work, and then error-correct if they don’t. But…
This Thing is Crazy Fast - Kodak Part 3- Smarter Every Day 286
Hey, it’s me, Destin. Welcome back to Smarter Every Day. This… [KA-CHUNK, KA CHUNK] [JET ENGINE NOISES] [CHU-KUH, CHU-KUH] [KER-FLOP] [DING!] is at the Kodak Film Factory in Rochester, New York. The fact that we get to film in the plant is amazing. This i…