yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Transforming exponential graphs (example 2) | Mathematics III | High School Math | Khan Academy


3m read
·Nov 11, 2024

We're told the graph of y equals 2 to the x is shown below. So that's the graph; it's an exponential function. Which of the following is the graph of y is equal to negative 1 times 2 to the x plus 3 plus 4? They give us 4 choices down here, and before we even look closely at those choices, let's just think about what this would look like if it was transformed into that.

You might notice that what we have here, this y that we want to find the graph of, is a transformation of this original one. How do we transform it? Well, we replaced x with x plus 3, then we multiplied that by negative 1, and then we add 4.

So let's take it step by step. This is y equals 2 to the x. What I want to do next is let's graph y is equal to 2 to the x plus 3 power. Well, if you replace x with x plus 3, you're going to shift the graph to the left, to the left, by three. That might be a little bit counter-intuitive, but when we actually think about some points, it'll hopefully make some sense.

Here, for example, in our original graph when x is equal to zero, y is equal to one. Well, how do we get y equal? How do we get y equal one for our new graph for this thing right over here? Well, to get y equals one here, the exponent here still has to be zero. So that's going to happen at x equals negative three. So that's going to happen at x equals negative 3, y is equal to 1.

So notice we shifted to the left by 3. Likewise, in our original graph, when x is 2, y is 4. Well, how do we get y equals 4 in this thing right over here? Well, for y to be equal to 4, this exponent here needs to be equal to 2. For this exponent to be equal to 2 (because 2 squared is 4), x is going to be equal to negative 1.

So when x is equal to negative 1, y is equal to 4. Notice we shifted to the left by 3. This thing, which isn't our final graph that we're looking for, is going to look something like, it's going to look something like, something like that - shifted.

Now let's figure out what the graph of, now let's multiply this expression times negative 1. Notice we're slowly building up to our goal, so now let's figure out the graph of y is equal to negative one times two to the x plus 3.

Here, when y equals two to the x plus 3, if we multiply that times negative one, whatever y we had, we're gonna have the negative of that. So instead of when x is equal to negative 3 having positive 1, when x equals negative 3, you're going to have negative 1. We multiply by negative 1.

When x is equal to negative 1, instead of having 4, you're going to have negative 4. So our graph is going to be flipped over; it's flipped over the x-axis and it's going to look something, something, something like this. This is not a perfect drawing, but it'll give us a sense of things.

And we can look at which of these graphs match up to that. Finally, we want to add that 4 there, so we want to figure out the graph of y equals negative 1 times 2 to the x plus 3 plus 4. We want to take what we just had and shift it up by four.

So instead of this being a negative one right over here, this is going to be a negative one plus four, which is three. Instead of this being a negative four, negative four plus 4 is 0. Instead of our horizontal asymptote being at y equals 0, our horizontal asymptote is going to be at y equals 4.

Our graph is going to look something like, we're going to look something like, like this; we just shifted that red graph up by four - shifted it up by four - and we have a horizontal asymptote at y equals four.

So let's look at which of these choices match that. So choice A right over here has a horizontal asymptote y equals four, but it is shifted on the horizontal direction inappropriately. In fact, it looks like it might have not been shifted to the left, so we can rule this one out.

This one over here, well, this one just - this one approaches our asymptote as x increases, so that's not right. It should approach our asymptote as x decreases, so we rule that one out. Choice C looks like what we just graphed: horizontal asymptote at y equals four. When x equals negative three, y is equal to three. That's what we got. When x is equal to negative one, y is equal to zero.

So this looks right, and you can even try those points out. We like choice C, and D is clearly off.

More Articles

View All
Encountering a Blind Worm Snake | Primal Survivor: Escape the Amazon
[Music] I’m losing daylight. This is an expanse of grassland, and it has what I need for a shelter: all this grass that I’m gonna cut down. I’m gonna either turn it into my bed or use it for my roof. It’s the rainy season, which means you better count on …
Roe v. Wade | National Constitution Center | Khan Academy
Hi, this is Kim from Khan Academy. Today we’re learning more about Roe versus Wade, the 1973 Supreme Court case that ruled that the right of privacy extends to a woman’s decision to have an abortion. To learn more about Roe versus Wade, I spoke to two exp…
Khan Academy Ed Talks with Adam Green, PhD - Wednesday, August 18
Hello and welcome to Ed Talks with Khan Academy, where we talk education with a variety of experts in the field. Today, I am excited to talk to my own teammate Dr. Adam Green about new content that we have just released on Khan Academy for the start of th…
Classifying shapes by lines and angles | Math | 4th grade | Khan Academy
Which shape matches all three clues? So here we have three clues, and we want to see which shape down below matches all three of these statements. So let’s start with the first clue. The first clue says the shape is a quadrilateral; “quad” meaning four-s…
Graphing parabola from quadratic in factored form
We’re asked to graph the equation ( Y = 12 \cdot x - 6 \cdot x + 2 ) and so, like always, pause this video and take out some graph paper or even try to do it on a regular piece of paper and see if you can graph this equation. Alright, now let’s work thro…
The biggest habit building mistake
If you have an addiction that brings you great shame, or just a nasty, nasty bad habit that you for some reason can’t stop doing, or even if you have something that is a good thing that you want to start doing—maybe it’s going to the gym. Maybe you want t…