yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Comparing exponent expressions


2m read
·Nov 11, 2024

So we are asked to order the expressions from least to greatest. This is from the exercises on Khan Academy. If we're doing it on Khan Academy, we would drag these little tiles around from least to greatest, least on the left, greatest on the right. I can't drag it around because this is just a picture.

I'm going to evaluate each of these and then I'm going to rewrite them from least to greatest. So let's start with (2) to the third minus (2) to the first. What is that going to be? (2) to the third minus (2) to the first. If you feel really confident, just pause this video and try to figure out the whole thing—order them from least to greatest.

Well, (2) to the third, that is (2) times (2) times (2), and then (2) to the first, well that's just (2). So (2) times (2) is (4), times (2) is (8). Minus (2), this is going to be equal to (6). So this expression right over here could be evaluated as being equal to (6).

Now what about this right over here? What is this equal to? Well, let's see. We have (2) squared plus (3) to the (0). (2) squared is (2) times (2), and anything to the (0) power is going to be equal to (1).

It's an interesting thing to think about what zero to the zero power should be, but that'll be a topic for another video. Here we have (3) to the zero power, which is clearly equal to (1). So we have (2) times (2) plus (1). This is (4) plus (1), which is equal to (5).

So the second tile is equal to (5). And then (3) squared. Well, (3) squared, that's just (3) times (3). (3) times (3) is equal to (9).

So if I were to order them from least to greatest, the smallest of these is (2) squared plus (3) to the (0) power. That one is equal to (5), so I'll put that on the left. Then we have this thing that's equal to (6), (2) to the third power minus (2) to the first power. And then the largest value here is (3) squared. So we would put that tile, (3) squared, we will put that tile on the right, and we're done.

More Articles

View All
Nietzsche - Overcome Shame, Become Who You Are
In The Joyous Science, Nietzsche writes, “Whom do you call bad? Those who always want to put others to shame. What is most humane? To spare someone shame. What is the seal of liberation? To no longer be ashamed of oneself.” So according to Nietzsche, some…
Can We Fix Climate Change? | Explorer
We can’t really fix climate change. We can mitigate it. We can get to work on it. We can spread it out. We can make things better. What we got to do is stop burning fossil fuels immediately, as soon as we possibly can. Then there’s a strange effect that …
Dave Bautista Makes a Log Ladder | Running Wild With Bear Grylls
[music playing] So the terrain here is definitely getting steeper and more committing. But you know, so much of survival is about just trying to be resourceful. I just wonder if maybe we maybe use that old trunk. Use that, get that down, and then we can d…
HOW TO UNDERSTAND YOURSELF | MARCUS AURELIUS | STOICISM
The Stoic Greeks had the maxim, know thyself. How do we in this digital age come to know ourselves in terms of our personalities and, more importantly, our potential? In this video, you will learn eight transformative Stoic techniques to really know yours…
Metallic bonds | Molecular and ionic compound structure and properties | AP Chemistry | Khan Academy
Now the last type of bond I’m going to talk about is known as the metallic bond, which I think I know a little bit about because I was the lead singer of a metallic bond in high school. I’ll talk about that in future videos, but let’s just take one of our…
Analyzing unbounded limits: mixed function | Limits and continuity | AP Calculus AB | Khan Academy
So, we’re told that ( f(x) ) is equal to ( \frac{x}{1 - \cos(e^x) - 2} ), and they ask us to select the correct description of the one-sided limits of ( f ) at ( x = 2 ). We see that right at ( x = 2 ), if we try to evaluate ( f(2) ), we get ( \frac{2}{1…