yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Comparing exponent expressions


2m read
·Nov 11, 2024

So we are asked to order the expressions from least to greatest. This is from the exercises on Khan Academy. If we're doing it on Khan Academy, we would drag these little tiles around from least to greatest, least on the left, greatest on the right. I can't drag it around because this is just a picture.

I'm going to evaluate each of these and then I'm going to rewrite them from least to greatest. So let's start with (2) to the third minus (2) to the first. What is that going to be? (2) to the third minus (2) to the first. If you feel really confident, just pause this video and try to figure out the whole thing—order them from least to greatest.

Well, (2) to the third, that is (2) times (2) times (2), and then (2) to the first, well that's just (2). So (2) times (2) is (4), times (2) is (8). Minus (2), this is going to be equal to (6). So this expression right over here could be evaluated as being equal to (6).

Now what about this right over here? What is this equal to? Well, let's see. We have (2) squared plus (3) to the (0). (2) squared is (2) times (2), and anything to the (0) power is going to be equal to (1).

It's an interesting thing to think about what zero to the zero power should be, but that'll be a topic for another video. Here we have (3) to the zero power, which is clearly equal to (1). So we have (2) times (2) plus (1). This is (4) plus (1), which is equal to (5).

So the second tile is equal to (5). And then (3) squared. Well, (3) squared, that's just (3) times (3). (3) times (3) is equal to (9).

So if I were to order them from least to greatest, the smallest of these is (2) squared plus (3) to the (0) power. That one is equal to (5), so I'll put that on the left. Then we have this thing that's equal to (6), (2) to the third power minus (2) to the first power. And then the largest value here is (3) squared. So we would put that tile, (3) squared, we will put that tile on the right, and we're done.

More Articles

View All
Addition and subtraction with number lines | 2nd grade | Khan Academy
[Voiceover] Which number line shows 47 plus 22? Let’s see, in this first number line we’re starting at 47, then we add 20 to get to 67. And then we add two to get to 69. So if you add 20, and then you’re adding two, you’re adding 22. So this one seems r…
Mapping shapes | Performing transformations | High school geometry | Khan Academy
We’re told that triangles. Let’s see, we have triangle PQR and triangle ABC are congruent. The side length of each square on the grid is one unit, so each of these is one unit. Which of the following sequences of transformations maps triangle PQR onto tri…
Mathematical Approaches to Image Processing with Carola Schönlieb
We ought to start with a little bit of your background. So what did you start researching and then what are you researching now? Okay, so I started out my research in mathematics in Austria, in Vienna, where I actually didn’t look at image processing or …
How to Fight Fire or Flooding on a Nuclear Submarine - Smarter Every Day 244
Hey, it’s me, Destin. Welcome back to Smarter Every Day. Earlier this year, I had an amazing opportunity to board a U.S. Navy nuclear submarine on an ice flow in the Arctic. This is the next video in a Smarter Every Day deep dive series into submarines an…
Alkane with isopropyl group | Organic chemistry | Khan Academy
Let’s try to name this molecule right over here. The first thing we want to do is identify the longest chain of carbons. So let’s see; it could be one, two, three, four, five, six, seven, eight, or let’s see, maybe it’s one, two, three, four, five, six, s…
Reasoning with linear equations | Solving equations & inequalities | Algebra I | Khan Academy
In this video, we’re going to try to solve the equation (3 \cdot x + 1 - x = 9). And like always, I encourage you to pause this video and try to work through this on your own. But the emphasis of this video is to not just get to the right answer, but to r…