yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Comparing exponent expressions


2m read
·Nov 11, 2024

So we are asked to order the expressions from least to greatest. This is from the exercises on Khan Academy. If we're doing it on Khan Academy, we would drag these little tiles around from least to greatest, least on the left, greatest on the right. I can't drag it around because this is just a picture.

I'm going to evaluate each of these and then I'm going to rewrite them from least to greatest. So let's start with (2) to the third minus (2) to the first. What is that going to be? (2) to the third minus (2) to the first. If you feel really confident, just pause this video and try to figure out the whole thing—order them from least to greatest.

Well, (2) to the third, that is (2) times (2) times (2), and then (2) to the first, well that's just (2). So (2) times (2) is (4), times (2) is (8). Minus (2), this is going to be equal to (6). So this expression right over here could be evaluated as being equal to (6).

Now what about this right over here? What is this equal to? Well, let's see. We have (2) squared plus (3) to the (0). (2) squared is (2) times (2), and anything to the (0) power is going to be equal to (1).

It's an interesting thing to think about what zero to the zero power should be, but that'll be a topic for another video. Here we have (3) to the zero power, which is clearly equal to (1). So we have (2) times (2) plus (1). This is (4) plus (1), which is equal to (5).

So the second tile is equal to (5). And then (3) squared. Well, (3) squared, that's just (3) times (3). (3) times (3) is equal to (9).

So if I were to order them from least to greatest, the smallest of these is (2) squared plus (3) to the (0) power. That one is equal to (5), so I'll put that on the left. Then we have this thing that's equal to (6), (2) to the third power minus (2) to the first power. And then the largest value here is (3) squared. So we would put that tile, (3) squared, we will put that tile on the right, and we're done.

More Articles

View All
How to Calculate the Intrinsic Value of a Stock in 2023 (Full Example)
All right guys, today we are going to be tackling a very big topic that I’m sure a lot of you guys are very interested in, and that is how to value a stock. So, at the end of this video, you’ll understand the step-by-step process to find the intrinsic val…
Definite integral properties (no graph): breaking interval | AP Calculus AB | Khan Academy
We’re given that the definite integral from one to four of f of x dx is equal to six, and the definite integral from one to seven of f of x dx is equal to eleven. We want to figure out the definite integral from four to seven of f of x dx. So, at least i…
15 Rules To Win At Life (Part 1)
This is the Sunday motivational video. Every Sunday, we bring you a different type of video that should improve your life. Today, we’re looking at 15 rules to win in life, Part 1. Welcome to ALux.com, the place where future billionaires come to get inspir…
Defiant | Vocabulary | Khan Academy
To Arms wordsmiths! This video is about the word defiant. Defiant—it’s an adjective. This word means openly disobeying rules, pushing back against authority. This word comes to us from French and ultimately Latin—a late Latin verb disfidare, which means …
Incorporating opposing viewpoints | Reading | Khan Academy
Hello readers! Let’s argue in writing. Argument is a kind of fight, but I think it is unwise to think of it as a one-way conversation. The best arguments do not plunge forward heedlessly; they do not steamroll opposition. Rather, they seek out opposing ar…
Interpreting equations graphically (example 2) | Mathematics III | High School Math | Khan Academy
Let F of T be ( e^{2T} - 2T^2 ) and H of T be ( 4 - 5T^2 ). The graphs of Y = F(T) and Y = H(T) are shown below. So, Y = F(T) is here in green, so this is really ( Y = e^{2T} - 2T^2 ). We see F(T) right over there, and Y = H(T) is shown in yellow. Alrigh…