yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Comparing exponent expressions


2m read
·Nov 11, 2024

So we are asked to order the expressions from least to greatest. This is from the exercises on Khan Academy. If we're doing it on Khan Academy, we would drag these little tiles around from least to greatest, least on the left, greatest on the right. I can't drag it around because this is just a picture.

I'm going to evaluate each of these and then I'm going to rewrite them from least to greatest. So let's start with (2) to the third minus (2) to the first. What is that going to be? (2) to the third minus (2) to the first. If you feel really confident, just pause this video and try to figure out the whole thing—order them from least to greatest.

Well, (2) to the third, that is (2) times (2) times (2), and then (2) to the first, well that's just (2). So (2) times (2) is (4), times (2) is (8). Minus (2), this is going to be equal to (6). So this expression right over here could be evaluated as being equal to (6).

Now what about this right over here? What is this equal to? Well, let's see. We have (2) squared plus (3) to the (0). (2) squared is (2) times (2), and anything to the (0) power is going to be equal to (1).

It's an interesting thing to think about what zero to the zero power should be, but that'll be a topic for another video. Here we have (3) to the zero power, which is clearly equal to (1). So we have (2) times (2) plus (1). This is (4) plus (1), which is equal to (5).

So the second tile is equal to (5). And then (3) squared. Well, (3) squared, that's just (3) times (3). (3) times (3) is equal to (9).

So if I were to order them from least to greatest, the smallest of these is (2) squared plus (3) to the (0) power. That one is equal to (5), so I'll put that on the left. Then we have this thing that's equal to (6), (2) to the third power minus (2) to the first power. And then the largest value here is (3) squared. So we would put that tile, (3) squared, we will put that tile on the right, and we're done.

More Articles

View All
Private jet expert reacts!
Why would I go to an unknown plane owner compared to a corporation? Because here’s the thing: plane owners are notorious for skimping on maintenance. Okay, I’m sorry, Kev, this is just not true. You really can’t—you cannot skimp on maintenance that’s req…
The Mani Tribe's Blowgun | Primal Survivor
[music playing] HAZEN AUDEL: The Mani have an unrivaled knowledge of the local plants and trees, relying on them for almost everything they need. [non-english speech] Huh? [non-english speech] [non-english speech] That one right there. [non-english speec…
How I Save 100% Of My Income
What’s up you guys? It’s Graham here. Sir, yes, the Tyler you read is correct. For the last several years, I have been able to save 100 percent of my income. Now, let me explain because I don’t live in a cardboard box off the one-on-one freeway. I don’t e…
Identifying scaled copies
What we’re going to do in this video is look at pairs of figures and see if they are scaled copies of each other. So for example, in this diagram, is figure B a scaled version of figure A? Pause the video and see if you can figure that out. There are mu…
Understanding Investor Terms & Incentives || Rookie Mistakes with Dalton Caldwell and Michael Seibel
It’s almost as if they get to run this game every day with multiple companies and all you’re trying to do is raise money and get back to work. Hey, this is Michael Seibel with Dalton Caldwell and welcome to Rookie Mistakes. We’ve asked YC founders for th…
Death by Black Hole
As of lately, it seems that everybody is trying to tell you when and how the world will end. Some scenarios are far more familiar and likely than others. Those that are widely discussed in the media range from infectious diseases to nuclear war, all the w…