yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding and subtracting polynomials of degree two | Algebra 1 (TX TEKS) | Khan Academy


2m read
·Nov 10, 2024

So we have two different expressions here, and what I want you to do is pause this video and see if you can rewrite each of these as a simplified polynomial in standard form. So pause the video and have a go with that.

All right, now let's do this together. So this first one we are adding two polynomials, and I could just rewrite this as -5x + 4x² + 7. Since I'm adding this entire second polynomial, I could just say this is going to be + 3x - 6 - 8x².

Now the key is we want to combine like terms. What do I mean by like terms? The ones that are the same degree. For example, here I have 4x², and then I am subtracting 8x². So if I have four of something and I subtract eight of that same something, I am now going to have -4 of that something. In this case, that something is x².

Now let's go to the first degree terms. I have -5x's and I also have 3x's. So if I take 3x's and I subtract 5x's, well, I'm going to have -2x's. And then last but not least, I have our constant terms. If I have a 7 and I subtract 6 from that, I am going to be left with 1.

And there I have it; I've simplified it. It's a polynomial, and it's in standard form. I've put the highest degree term first, the second degree term, then the first degree term, and then the constant term.

Let's do the same thing with this one. Now this one I can rewrite this first polynomial, the first part of this expression, as 5y + 3y² - 9. But we have to be a little bit careful here because here we are subtracting this second polynomial.

Another way to think about it is we could view this as if I'm subtracting it; that's the same thing as 1 times all of this. So if I want to remove these parentheses, I have to distribute this -1 onto every term.

So, -1 * 8y² is -8y², -1 * -1 is +1, -1 * 2y is -2y. Now I can do what I just did in the previous example. I could, for example, say, all right, where are my second degree terms? I have 3y², and I'm going to subtract 8y² from that. Well, that's going to be -5y².

Then I could go to our first-degree terms. I have 5y's, and then from that, I'm going to subtract 2y. Well, that's going to give me +3y. And then last but not least, I have -9 here, and then I'm going to add 1, which would get us to -8.

And we're done.

More Articles

View All
a day full of eating in Tokyo,Japan 🍣~ spend the day with me🇯🇵
Hey fam! To welcome you to a day in my life in Tokyo. This day is full of adventures, and today I’m excited to share with you some of my favorite activities. First up, we have Ginson. The restaurant is hidden away from the street, but once you enter the r…
...And We'll Do it Again
Qus Gazar is lying to you in every video, even in this one, because our videos distill very complex subjects into flashy 10-minute pieces. Unfortunately, reality is well complicated. The question of how we deal with that is central to what we do on this c…
Our Water Footprint | Breakthrough
Water is finite, but our demands for it are not. So in places where we have rivers running dry, what’s happening is our demands are bumping up against those limits of the finite supply. Our use of water for agriculture, for food production, for growing ci…
Comparing decimals in different representations
So what we’re going to do in this video is build our muscles at comparing numbers that are represented in different ways. So, for example, right over here on the left we have 0.37; you could also view this as 37 hundredths. And on the right we have 307 th…
It Looks Like a Velociraptor Foot | Photographer | National Geographic
Oh, you can see it! Heart starting to beat right there. Oh, that’s crazy, look at that! Oh my God, beyond that, of course, like that turning into a chicken. There’s a lot that has to happen, but like, this is such a… it looks like a river Delta, and it’s …
Solving equations by graphing | Algebra 2 | Khan academy
Let’s say you wanted to solve this equation: (2^{x^2 - 3} = \frac{1}{\sqrt[3]{x}}). Pause this video and see if you can solve this. Well, you probably realize that this is not so easy to solve. The way that I would at least attempt to tackle it is to say…