yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding and subtracting polynomials of degree two | Algebra 1 (TX TEKS) | Khan Academy


2m read
·Nov 10, 2024

So we have two different expressions here, and what I want you to do is pause this video and see if you can rewrite each of these as a simplified polynomial in standard form. So pause the video and have a go with that.

All right, now let's do this together. So this first one we are adding two polynomials, and I could just rewrite this as -5x + 4x² + 7. Since I'm adding this entire second polynomial, I could just say this is going to be + 3x - 6 - 8x².

Now the key is we want to combine like terms. What do I mean by like terms? The ones that are the same degree. For example, here I have 4x², and then I am subtracting 8x². So if I have four of something and I subtract eight of that same something, I am now going to have -4 of that something. In this case, that something is x².

Now let's go to the first degree terms. I have -5x's and I also have 3x's. So if I take 3x's and I subtract 5x's, well, I'm going to have -2x's. And then last but not least, I have our constant terms. If I have a 7 and I subtract 6 from that, I am going to be left with 1.

And there I have it; I've simplified it. It's a polynomial, and it's in standard form. I've put the highest degree term first, the second degree term, then the first degree term, and then the constant term.

Let's do the same thing with this one. Now this one I can rewrite this first polynomial, the first part of this expression, as 5y + 3y² - 9. But we have to be a little bit careful here because here we are subtracting this second polynomial.

Another way to think about it is we could view this as if I'm subtracting it; that's the same thing as 1 times all of this. So if I want to remove these parentheses, I have to distribute this -1 onto every term.

So, -1 * 8y² is -8y², -1 * -1 is +1, -1 * 2y is -2y. Now I can do what I just did in the previous example. I could, for example, say, all right, where are my second degree terms? I have 3y², and I'm going to subtract 8y² from that. Well, that's going to be -5y².

Then I could go to our first-degree terms. I have 5y's, and then from that, I'm going to subtract 2y. Well, that's going to give me +3y. And then last but not least, I have -9 here, and then I'm going to add 1, which would get us to -8.

And we're done.

More Articles

View All
Yellowstone Like You’ve Never Seen It | National Geographic
What is a national park? What are they for? Are they a playground for us? Are they for protecting bears and wolves and bison? But they got to be for both, and you have to do both without impacting the other very much. As you drive into Yellowstone Nation…
Sanctuary | Vocabulary | Khan Academy
It’s all going to be okay, wordsmiths. We’re approaching a sanctuary. This is a peaceful video about a peaceful word. [Music] Sanct. It’s a noun. It means a place to hide and be safe; a place of protection for humans or animals. Maybe you’ve heard of an…
Phases of the moon | Middle school Earth and space science | Khan Academy
Imagine that one day all of the clocks and computers on Earth broke and all the calendars disappeared. How would you keep track of how much time had passed? Well, you could look to the moon. Humans have used the moon to keep track of time for thousands of…
I caught Dad a chicken - The Chicken Wrangler
Dtin don’t tear down granddaddy Stakes, darl. [Music] Back, I’m taking pictures of you boy. A billions of birdies walking out loud, talking in C clams in the [Music]. CLS, go run that chicken up here. Tell that chicken to come up here so vibrating spiders…
15 Things Everyone Wants But Money Can’t Buy
You know, there are things money can’t buy. You know it, but you forget it. You forget that fundamentally, you’re on the same level as the richest people in the world. You have to appreciate these things now, so that when your wealth grows, your motivatio…
Fundamental theorem to evaluate derivative
Let’s say that I were to walk up to you on the street and said, “All right, I have this function g of x which I’m going to define as the definite integral from 19 to x of the cube root of t dt.” And then I were to ask you, “What is the derivative of g ev…