yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding and subtracting polynomials of degree two | Algebra 1 (TX TEKS) | Khan Academy


2m read
·Nov 10, 2024

So we have two different expressions here, and what I want you to do is pause this video and see if you can rewrite each of these as a simplified polynomial in standard form. So pause the video and have a go with that.

All right, now let's do this together. So this first one we are adding two polynomials, and I could just rewrite this as -5x + 4x² + 7. Since I'm adding this entire second polynomial, I could just say this is going to be + 3x - 6 - 8x².

Now the key is we want to combine like terms. What do I mean by like terms? The ones that are the same degree. For example, here I have 4x², and then I am subtracting 8x². So if I have four of something and I subtract eight of that same something, I am now going to have -4 of that something. In this case, that something is x².

Now let's go to the first degree terms. I have -5x's and I also have 3x's. So if I take 3x's and I subtract 5x's, well, I'm going to have -2x's. And then last but not least, I have our constant terms. If I have a 7 and I subtract 6 from that, I am going to be left with 1.

And there I have it; I've simplified it. It's a polynomial, and it's in standard form. I've put the highest degree term first, the second degree term, then the first degree term, and then the constant term.

Let's do the same thing with this one. Now this one I can rewrite this first polynomial, the first part of this expression, as 5y + 3y² - 9. But we have to be a little bit careful here because here we are subtracting this second polynomial.

Another way to think about it is we could view this as if I'm subtracting it; that's the same thing as 1 times all of this. So if I want to remove these parentheses, I have to distribute this -1 onto every term.

So, -1 * 8y² is -8y², -1 * -1 is +1, -1 * 2y is -2y. Now I can do what I just did in the previous example. I could, for example, say, all right, where are my second degree terms? I have 3y², and I'm going to subtract 8y² from that. Well, that's going to be -5y².

Then I could go to our first-degree terms. I have 5y's, and then from that, I'm going to subtract 2y. Well, that's going to give me +3y. And then last but not least, I have -9 here, and then I'm going to add 1, which would get us to -8.

And we're done.

More Articles

View All
See an Apocalyptic World Envisioned in Miniature | Short Film Showcase
[Music] I’m not the type of photographer that’s gonna go out and find things to photograph. I’m gonna create things to photograph. Kathleen, I started this body of work back in 2005. It’s a series called “the city postulates a world post mankind.” Somethi…
Employment unit overview | Teacher resources | Financial Literacy | Khan Academy
Hi teachers, Welcome to the unit on employment. So, what’s covered here? Well, I think many of us, I don’t know if you fall into this category, but I remember the first time that I had a job, and they made me fill out all of these forms when I took that …
Multiplying 3-digit by 2-digit numbers: Error analysis | Grade 5 (TX TEKS) | Khan Academy
So we have a situation here where someone is attempting to multiply 586 * 43, and what we want to do together is figure out if they did this correctly or whether they made a mistake. And if they made a mistake, what step did they make a mistake on? Actual…
This Duck Has a Foot Growing On Its Head - Smarter Every Day 25
Hey, it’s me Destin. This week I’ve been in the lab, or my garage, working on my thesis. So, I’m trying to finish it, so I can’t give you an awesome video this week. To hold you over, I’ll give you some video of when me and my daughter went to the fair an…
1998 Berkshire Hathaway Annual Meeting (Full Version)
[Applause] Morning! [Applause] Good morning, I’m Warren Buffett, chairman of Berkshire, and this is my partner. This hyperactivity fellow over here is Charlie Munger. We’ll do this as we’ve done in the past, following the Saddam Hussein School of Manageme…
How To Change The World? Get The Small Things Right – Dalton Caldwell and Michael Seibel
Let’s say that changing the world is like uprooting a tree, like a big old tall tree. Imagine there were two founders. One founder knew that trees have roots, and the other founder had no idea. Right? Like the trees with roots person, they have an advanta…