yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How to organize, add and multiply matrices - Bill Shillito


3m read
·Nov 9, 2024

Translator: Andrea McDonough
Reviewer: Bedirhan Cinar

By now, I'm sure you know that in just about anything you do in life, you need numbers. In particular, though, some fields don't just need a few numbers, they need lots of them. How do you keep track of all those numbers?

Well, mathematicians dating back as early as ancient China came up with a way to represent arrays of many numbers at once. Nowadays we call such an array a "matrix," and many of them hanging out together, "matrices." Matrices are everywhere. They are all around us, even now in this very room. Sorry, let's get back on track.

Matrices really are everywhere, though. They are used in business, economics, cryptography, physics, electronics, and computer graphics. One reason matrices are so cool is that we can pack so much information into them and then turn a huge series of different problems into one single problem. So, to use matrices, we need to learn how they work.

It turns out, you can treat matrices just like regular numbers. You can add them, subtract them, even multiply them. You can't divide them, but that's a rabbit hole of its own. Adding matrices is pretty simple. All you have to do is add the corresponding entries in the order they come. So the first entries get added together, the second entries, the third, all the way down. Of course, your matrices have to be the same size, but that's pretty intuitive anyway.

You can also multiply the whole matrix by a number, called a scalar. Just multiply every entry by that number. But wait, there's more! You can actually multiply one matrix by another matrix. It's not like adding them, though, where you do it entry by entry. It's more unique and pretty cool once you get the hang of it.

Here's how it works. Let's say you have two matrices. Let's make them both two by two, meaning two rows by two columns. Write the first matrix to the left and the second matrix goes next to it and translated up a bit, kind of like we are making a table. The product we get when we multiply the matrices together will go right between them. We'll also draw some gridlines to help us along.

Now, look at the first row of the first matrix and the first column of the second matrix. See how there's two numbers in each? Multiply the first number in the row by the first number in the column: 1 times 2 is 2. Now do the next ones: 3 times 3 is 9. Now add them up: 2 plus 9 is 11. Let's put that number in the top-left position so that it matches up with the rows and columns we used to get it. See how that works?

You can do the same thing to get the other entries. -4 plus 0 is -4. 4 plus -3 is 1. -8 plus 0 is -8. So, here's your answer. Not all that bad, is it? There's one catch, though. Just like with addition, your matrices have to be the right size.

Look at these two matrices. 2 times 8 is 16. 3 times 4 is 12. 3 times—wait a minute, there are no more rows in the second matrix. We ran out of room. So, these matrices can't be multiplied. The number of columns in the first matrix has to be the same as the number of rows in the second matrix. As long as you're careful to match up your dimensions right, though, it's pretty easy.

Understanding matrix multiplication is just the beginning, by the way. There's so much you can do with them. For example, let's say you want to encrypt a secret message. Let's say it's "Math rules." Though, why anybody would want to keep this a secret is beyond me. Letting numbers stand for letters, you can put the numbers in a matrix and then an encryption key in another. Multiply them together and you've got a new encoded matrix.

The only way to decode the new matrix and read the message is to have the key, that second matrix. There's even a branch of mathematics that uses matrices constantly, called Linear Algebra. If you ever get a chance to study Linear Algebra, do it, it's pretty awesome. But just remember, once you know how to use matrices, you can do pretty much anything.

More Articles

View All
Homeroom with Sal & David Siegel - Wednesday, July 14
Hi everyone, Sal Khan here from Khan Academy. Welcome to the Homeroom live stream! It’s been a little while since we last saw each other, so it’s so good to see you again. We have an exciting conversation today with David Siegel, who’s a co-chair, co-foun…
How I Developed the Principled Way of Thinking
What happened is I found that I needed to write down my criteria and test them. So I started with the markets because, you know, it’s tough to wrestle all in your head with everything. I found that I needed to do that, and I could test the criteria. I fo…
Kimberly Bryant Speaks at Female Founders Conference 2015
Good afternoon everyone. Good afternoon everyone! I’m going to need a little bit of audience participation, especially in a room full of female founders, so I’m thanking you for that in advance. It’s definitely a pleasure to be here with you all this afte…
Warren Buffett:The upcoming stock market collapse?
Warren Buffett’s favorite stock market indicator is flashing warning signs. Warren Buffett’s called The Oracle of Omaha for good reason, and it is not just pure intuition. He coined a certain metric called the Buffett indicator, and he has even gone as fa…
Warren Buffett's Most Iconic Lecture EVER (MUST WATCH)
You would be better off if when you got out of school here, you got a punch card with 20 punches on it. Every big financial decision you made, you used up a punch. You’d get very rich because you’d think through very hard each one. If you went to a cockta…
Interpreting bar graphs (alligators) | Math | 3rd grade | Khan Academy
James counted the number of alligators in various local bodies of water and graphed the results. How many fewer alligators are in Bite Swamp than Chomp Lake and Reptile Creek combined? So down here we have this bar graph that Jam somehow survived to crea…