yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Secant line with arbitrary difference (with simplification) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

A secant line intersects the curve ( y ) is equal to ( 2x^2 + 1 ) at two points with ( x ) coordinates ( 4 ) and ( 4 + h ), where ( h ) does not equal zero. What is the slope of the secant line in terms of ( h )? Your answer must be fully expanded and simplified.

So we know the two points that are on the secant line. It might not be obvious from how they wrote it, but let's make a little table here to make that a little bit clearer.

So we have ( x ) and then we have ( y ), which is equal to ( 2x^2 + 1 ). And we know that when ( x ) is equal to ( 4 ), well what is ( y ) going to be equal to? Well, it's going to be ( 2 \times 4^2 + 1 ), which is the same thing as ( 2 \times 16 + 1 ), which is the same thing as ( 32 + 1 ). So it is going to be ( 33 ).

What about when ( x ) is equal to ( 4 + h )? When ( x = 4 + h ), well it's going to be ( 2 \times (4 + h)^2 + 1 ). Well, that's going to be ( 2 \times (4 + h)^2 ) which is going to be ( 16 + 2 \times 4h ), so it's going to be ( 8h + h^2 ), and then we have our plus ( 1 ) still.

If we distribute the ( 2 ), that's going to get us to ( 32 + 16h + 2h^2 + 1 ). Then we add the ( 32 ) to the ( 1 ) and actually I'm going to switch the order a little bit so I have the highest degree term first. So it's going to be ( 2h^2 + 16h ) and then plus ( 32 + 1 ) is ( 33 ).

So we have these two points: we have ( (4, 33) ) and we have the other point ( (4 + h, 2h^2 + 16h + 33) ). We have to find the slope between these two points because the secant line contains both of these points.

So how do we find the slope of a line? Well, we do a change in ( y ) over change in ( x ). So it's our change in ( y ). Well, if we view this as the endpoint and this is the starting point, our change in ( y ) is going to be this minus that. So it's going to be ( 2h^2 + 16h + 33 - 33 ).

Those two are going to cancel each other out. Now, over what is our change in ( x )? Well, if we end it at ( 4 + h ), but then we started at ( 4 ), it's going to be ( (4 + h) - 4 ).

These two cancel with each other and we are left with ( 2h^2 + 16h ) over ( h ). Well, we can divide everything in the numerator and denominator by ( h ). What are we going to get? This is going to be ( 2h + 16 ) over ( 1 ) or just ( 2h + 16 ).

And we're done! This is the slope of the secant line in terms of ( h ). Once again, we just had to think about the secant line containing the points ( (4, f(4)) ) or ( 2 \times 4^2 + 1 ) right over here, and then ( 4 + h ).

Well, I didn't call this ( f(x) ) but I think you get the idea, and then when ( x ) is ( 4 + h ), well this is going to be ( y ), and we just found the slope between these two points.

More Articles

View All
The Egyptian and Hittite Peace Treaty | Lost Treasures of Egypt
[Music] In Luxor’s Karnak Temple, Colleen is hunting for clues that explain Ramsay’s rise to power. Ramses was a mighty warrior and general who fought in many campaigns and expanded Egypt’s borders to the east and south. But the temple walls suggest that’…
The worst self improvement mistake
I feel like all of us at some point in our life have gotten into a bit of a rut, a period of our life where motivation is hard to come by. We’re not feeling as energetic and motivated as we usually are about life in general. And the goals that we’ve set f…
Warren Buffett’s Most Iconic Interview Ever (Long Lost Footage)
Being a sound investor really just requires a certain control of your temperament and the ability to know what you know and know what you don’t know, and occasionally [Music] act. The greatest investor of our time, but you’ll find him in Omaha, Nebraska. …
Expedition Amazon – Into the Waters | National Geographic
[Music] Rivers really are a little bit like stories. They have a beginning, a middle, and an end. And just like any good story, you really have to start at the beginning. 4,000 miles from the Andes to the Atlantic flows the iconic Amazon River, depended u…
Teaching Math with Khanmigo
Meet Conmigo, your aid-driven companion who’s revolutionizing teaching for a more engaging and efficient experience. Kigo has many exciting features that support teachers, and this video will showcase ways you can use Kigo to create course-specific mathem…
2015 AP Calculus AB/BC 1c | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
All right, part C. At what time ( t ) where ( 0 \leq t \leq 8 ) is the amount of water in the pipe at a minimum? Justify your answer. All right, well, let’s define a function ( w ) that represents the amount of water in the pipe at any time ( t ), and th…