yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Secant line with arbitrary difference (with simplification) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

A secant line intersects the curve ( y ) is equal to ( 2x^2 + 1 ) at two points with ( x ) coordinates ( 4 ) and ( 4 + h ), where ( h ) does not equal zero. What is the slope of the secant line in terms of ( h )? Your answer must be fully expanded and simplified.

So we know the two points that are on the secant line. It might not be obvious from how they wrote it, but let's make a little table here to make that a little bit clearer.

So we have ( x ) and then we have ( y ), which is equal to ( 2x^2 + 1 ). And we know that when ( x ) is equal to ( 4 ), well what is ( y ) going to be equal to? Well, it's going to be ( 2 \times 4^2 + 1 ), which is the same thing as ( 2 \times 16 + 1 ), which is the same thing as ( 32 + 1 ). So it is going to be ( 33 ).

What about when ( x ) is equal to ( 4 + h )? When ( x = 4 + h ), well it's going to be ( 2 \times (4 + h)^2 + 1 ). Well, that's going to be ( 2 \times (4 + h)^2 ) which is going to be ( 16 + 2 \times 4h ), so it's going to be ( 8h + h^2 ), and then we have our plus ( 1 ) still.

If we distribute the ( 2 ), that's going to get us to ( 32 + 16h + 2h^2 + 1 ). Then we add the ( 32 ) to the ( 1 ) and actually I'm going to switch the order a little bit so I have the highest degree term first. So it's going to be ( 2h^2 + 16h ) and then plus ( 32 + 1 ) is ( 33 ).

So we have these two points: we have ( (4, 33) ) and we have the other point ( (4 + h, 2h^2 + 16h + 33) ). We have to find the slope between these two points because the secant line contains both of these points.

So how do we find the slope of a line? Well, we do a change in ( y ) over change in ( x ). So it's our change in ( y ). Well, if we view this as the endpoint and this is the starting point, our change in ( y ) is going to be this minus that. So it's going to be ( 2h^2 + 16h + 33 - 33 ).

Those two are going to cancel each other out. Now, over what is our change in ( x )? Well, if we end it at ( 4 + h ), but then we started at ( 4 ), it's going to be ( (4 + h) - 4 ).

These two cancel with each other and we are left with ( 2h^2 + 16h ) over ( h ). Well, we can divide everything in the numerator and denominator by ( h ). What are we going to get? This is going to be ( 2h + 16 ) over ( 1 ) or just ( 2h + 16 ).

And we're done! This is the slope of the secant line in terms of ( h ). Once again, we just had to think about the secant line containing the points ( (4, f(4)) ) or ( 2 \times 4^2 + 1 ) right over here, and then ( 4 + h ).

Well, I didn't call this ( f(x) ) but I think you get the idea, and then when ( x ) is ( 4 + h ), well this is going to be ( y ), and we just found the slope between these two points.

More Articles

View All
Laks Srini on Making Homeownership in Reach with ZeroDown
Bucks, rainy welcome to the podcast! Thanks, thanks for having me here. So you are the CTO and the co-founder of Zero Down. What does Zero Down do? So, we help people buy houses. We think, even in a place like the Bay Area, people with good jobs and hea…
15 Signs You are the New Poor
The World Economic Forum said, and this is a direct quote: “By 2030, you will own nothing and you’ll be happy.” There’s a new breed of poor people out there, some by societal design, some by choice. They don’t look poor on the surface, but they are cursed…
Killer Red Fox – Ep. 5 | National Geographic Presents: IMPACT With Gal Gadot
GAL: “We live for the next seven generations. Everything we do, and everything we don’t do, impacts the next seven generations.” This way of life has been passed down to Chief Shirell from her ancestors, whose land is being lost to climate change. Committ…
Jessica Livingston Introduces Startup School SV 2014
Good morning! Hello everyone, welcome! I’m Jessica Livingston with Y Combinator. We’re going to get started now, and today’s a really special [Applause] day. Today is the 10th Startup School we’ve ever done. It’s pretty amazing to think we’ve been doing t…
The Search for a Genetic Disease Cure | Explorer
Iceland’s Decode Laboratories is one of the world’s leading genetic research facilities. Decode has been running large genomic studies now, in fact, for decades. They really did pioneer the standard approach, where what you do is enroll individuals into s…
Westworld , Ford about God and existence. [S02E07]
[Music] To see the world, rain of sand. Heaven in a wild flower. Hold infinity in the palm of your hand and eternity in an hour. [Music] Robert: How are you alive? Bernard: Well, you’ve seen the company’s little undertaking. Do you think James Dallas wo…