yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Secant line with arbitrary difference (with simplification) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

A secant line intersects the curve ( y ) is equal to ( 2x^2 + 1 ) at two points with ( x ) coordinates ( 4 ) and ( 4 + h ), where ( h ) does not equal zero. What is the slope of the secant line in terms of ( h )? Your answer must be fully expanded and simplified.

So we know the two points that are on the secant line. It might not be obvious from how they wrote it, but let's make a little table here to make that a little bit clearer.

So we have ( x ) and then we have ( y ), which is equal to ( 2x^2 + 1 ). And we know that when ( x ) is equal to ( 4 ), well what is ( y ) going to be equal to? Well, it's going to be ( 2 \times 4^2 + 1 ), which is the same thing as ( 2 \times 16 + 1 ), which is the same thing as ( 32 + 1 ). So it is going to be ( 33 ).

What about when ( x ) is equal to ( 4 + h )? When ( x = 4 + h ), well it's going to be ( 2 \times (4 + h)^2 + 1 ). Well, that's going to be ( 2 \times (4 + h)^2 ) which is going to be ( 16 + 2 \times 4h ), so it's going to be ( 8h + h^2 ), and then we have our plus ( 1 ) still.

If we distribute the ( 2 ), that's going to get us to ( 32 + 16h + 2h^2 + 1 ). Then we add the ( 32 ) to the ( 1 ) and actually I'm going to switch the order a little bit so I have the highest degree term first. So it's going to be ( 2h^2 + 16h ) and then plus ( 32 + 1 ) is ( 33 ).

So we have these two points: we have ( (4, 33) ) and we have the other point ( (4 + h, 2h^2 + 16h + 33) ). We have to find the slope between these two points because the secant line contains both of these points.

So how do we find the slope of a line? Well, we do a change in ( y ) over change in ( x ). So it's our change in ( y ). Well, if we view this as the endpoint and this is the starting point, our change in ( y ) is going to be this minus that. So it's going to be ( 2h^2 + 16h + 33 - 33 ).

Those two are going to cancel each other out. Now, over what is our change in ( x )? Well, if we end it at ( 4 + h ), but then we started at ( 4 ), it's going to be ( (4 + h) - 4 ).

These two cancel with each other and we are left with ( 2h^2 + 16h ) over ( h ). Well, we can divide everything in the numerator and denominator by ( h ). What are we going to get? This is going to be ( 2h + 16 ) over ( 1 ) or just ( 2h + 16 ).

And we're done! This is the slope of the secant line in terms of ( h ). Once again, we just had to think about the secant line containing the points ( (4, f(4)) ) or ( 2 \times 4^2 + 1 ) right over here, and then ( 4 + h ).

Well, I didn't call this ( f(x) ) but I think you get the idea, and then when ( x ) is ( 4 + h ), well this is going to be ( y ), and we just found the slope between these two points.

More Articles

View All
No More Gas | The Worst Energy Crisis In 40 Years
The U.S. is facing a diesel shortage. The price of diesel has been soaring for months. In 25 days from now, there will be no more diesel, up 27 and 28 percent. It’s a very, very high bill. “What’s up guys, it’s Graham here.” So, in 1973, the United State…
What Would You Do If Money Didn’t Matter? | Short Film Showcase
What do you desire? What makes you itch? What sort of a situation would you like? Let’s suppose I do this often in vocational guidance of students. They come to me and say, “Well, we’re getting out of college and
Mr. Freeman, part 00
So here you are. You’ve laid your fears and doubts on the bonfire for me to burn the hell out of them. Now I step out into the center of this effin coliseum with a torch and a gas can in my hands. In front of me — a crowd of naked people backing up agains…
Bill Belichick & Ray Dalio on Bill's Most Important Principles: Part 2
Yeah, and that’s that. Of course, it is harder to do in today’s society with social media, and so there’s a lot of feedback from social media. People who don’t know the players, the team, have an opinion—like, dislike, whatever it is—but they don’t reall…
Calculations using Avogadro's number (part 2) | Chemistry | Khan Academy
Let’s solve a few numerical on Avogadro number and moles. Here’s the first one: how many glucose molecules are in 2.37 moles of glucose? Let’s quickly remind ourselves what moles are. Moles are like dozens. Just like how one dozen equals 12, a mole repre…
How to Flush $5,000,000,000 Down the Drain - A Netflix Original Documentary
[Music] So Netflix reported their Q1 2021 earnings on Tuesday, Tuesday, April 20th. Overall, their results weren’t too bad. Of course, we know Netflix makes money through selling subscriptions to their streaming service. Overall, their revenue was up, gre…