yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Secant line with arbitrary difference (with simplification) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

A secant line intersects the curve ( y ) is equal to ( 2x^2 + 1 ) at two points with ( x ) coordinates ( 4 ) and ( 4 + h ), where ( h ) does not equal zero. What is the slope of the secant line in terms of ( h )? Your answer must be fully expanded and simplified.

So we know the two points that are on the secant line. It might not be obvious from how they wrote it, but let's make a little table here to make that a little bit clearer.

So we have ( x ) and then we have ( y ), which is equal to ( 2x^2 + 1 ). And we know that when ( x ) is equal to ( 4 ), well what is ( y ) going to be equal to? Well, it's going to be ( 2 \times 4^2 + 1 ), which is the same thing as ( 2 \times 16 + 1 ), which is the same thing as ( 32 + 1 ). So it is going to be ( 33 ).

What about when ( x ) is equal to ( 4 + h )? When ( x = 4 + h ), well it's going to be ( 2 \times (4 + h)^2 + 1 ). Well, that's going to be ( 2 \times (4 + h)^2 ) which is going to be ( 16 + 2 \times 4h ), so it's going to be ( 8h + h^2 ), and then we have our plus ( 1 ) still.

If we distribute the ( 2 ), that's going to get us to ( 32 + 16h + 2h^2 + 1 ). Then we add the ( 32 ) to the ( 1 ) and actually I'm going to switch the order a little bit so I have the highest degree term first. So it's going to be ( 2h^2 + 16h ) and then plus ( 32 + 1 ) is ( 33 ).

So we have these two points: we have ( (4, 33) ) and we have the other point ( (4 + h, 2h^2 + 16h + 33) ). We have to find the slope between these two points because the secant line contains both of these points.

So how do we find the slope of a line? Well, we do a change in ( y ) over change in ( x ). So it's our change in ( y ). Well, if we view this as the endpoint and this is the starting point, our change in ( y ) is going to be this minus that. So it's going to be ( 2h^2 + 16h + 33 - 33 ).

Those two are going to cancel each other out. Now, over what is our change in ( x )? Well, if we end it at ( 4 + h ), but then we started at ( 4 ), it's going to be ( (4 + h) - 4 ).

These two cancel with each other and we are left with ( 2h^2 + 16h ) over ( h ). Well, we can divide everything in the numerator and denominator by ( h ). What are we going to get? This is going to be ( 2h + 16 ) over ( 1 ) or just ( 2h + 16 ).

And we're done! This is the slope of the secant line in terms of ( h ). Once again, we just had to think about the secant line containing the points ( (4, f(4)) ) or ( 2 \times 4^2 + 1 ) right over here, and then ( 4 + h ).

Well, I didn't call this ( f(x) ) but I think you get the idea, and then when ( x ) is ( 4 + h ), well this is going to be ( y ), and we just found the slope between these two points.

More Articles

View All
The Gilded Age part 1 | The Gilded Age (1865-1898) | US History | Khan Academy
Hello David, hello Kim. So, I’ve brought you here to talk about the Gilded Age, which is one of my favorite eras of American history because everything was great and covered in gold. No, because it is the only era of American history I can think of that h…
This Is What It's Like to Be a Space Rocket Launcher in Alaska | Short Film Showcase
We were up at the maintenance shop and we were waiting for it to go off. When it went off, you know, I was like everybody was real happy for the first couple of seconds. Then after that, it’s like, oh no, something’s not right, kind of a hopeless person. …
DoorDash at YC Summer 2013 Demo Day
Hi, we’re DoorDash, and we enable every restaurant to deliver for customers. We offer restaurant food delivery in under 45 minutes, and for restaurant owners, we provide our own drivers and manage the logistics of delivery. Now, you might think that food…
Most Important Lifestyle Habits Of Successful Founders
Let’s examine the facts. Yes, fact, fact, fact, fact, great, you’re fine. Yes, however, sometimes we look at the facts, and you’re not fine. [Music] This is Michael Seibel with Dalton Caldwell. In our last video, we talked about the setbacks that make fou…
Civic engagement | Citizenship | High school civics | Khan Academy
[Instructor] Civic engagement is defined as the actions of local leaders and residents to improve their community and the lives of their community members. It’s important to think about these terms pretty broadly. We tend to think about community as a wor…
Work For Future Generations | Continent 7: Antarctica
[Music] When I’m down in Antarctica and I see our team working, and I see our scientists who are devoting their lives to understanding the changing world based on what’s happening in Antarctica, my comfort is that there are generations after me that will …