yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Secant line with arbitrary difference (with simplification) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

A secant line intersects the curve ( y ) is equal to ( 2x^2 + 1 ) at two points with ( x ) coordinates ( 4 ) and ( 4 + h ), where ( h ) does not equal zero. What is the slope of the secant line in terms of ( h )? Your answer must be fully expanded and simplified.

So we know the two points that are on the secant line. It might not be obvious from how they wrote it, but let's make a little table here to make that a little bit clearer.

So we have ( x ) and then we have ( y ), which is equal to ( 2x^2 + 1 ). And we know that when ( x ) is equal to ( 4 ), well what is ( y ) going to be equal to? Well, it's going to be ( 2 \times 4^2 + 1 ), which is the same thing as ( 2 \times 16 + 1 ), which is the same thing as ( 32 + 1 ). So it is going to be ( 33 ).

What about when ( x ) is equal to ( 4 + h )? When ( x = 4 + h ), well it's going to be ( 2 \times (4 + h)^2 + 1 ). Well, that's going to be ( 2 \times (4 + h)^2 ) which is going to be ( 16 + 2 \times 4h ), so it's going to be ( 8h + h^2 ), and then we have our plus ( 1 ) still.

If we distribute the ( 2 ), that's going to get us to ( 32 + 16h + 2h^2 + 1 ). Then we add the ( 32 ) to the ( 1 ) and actually I'm going to switch the order a little bit so I have the highest degree term first. So it's going to be ( 2h^2 + 16h ) and then plus ( 32 + 1 ) is ( 33 ).

So we have these two points: we have ( (4, 33) ) and we have the other point ( (4 + h, 2h^2 + 16h + 33) ). We have to find the slope between these two points because the secant line contains both of these points.

So how do we find the slope of a line? Well, we do a change in ( y ) over change in ( x ). So it's our change in ( y ). Well, if we view this as the endpoint and this is the starting point, our change in ( y ) is going to be this minus that. So it's going to be ( 2h^2 + 16h + 33 - 33 ).

Those two are going to cancel each other out. Now, over what is our change in ( x )? Well, if we end it at ( 4 + h ), but then we started at ( 4 ), it's going to be ( (4 + h) - 4 ).

These two cancel with each other and we are left with ( 2h^2 + 16h ) over ( h ). Well, we can divide everything in the numerator and denominator by ( h ). What are we going to get? This is going to be ( 2h + 16 ) over ( 1 ) or just ( 2h + 16 ).

And we're done! This is the slope of the secant line in terms of ( h ). Once again, we just had to think about the secant line containing the points ( (4, f(4)) ) or ( 2 \times 4^2 + 1 ) right over here, and then ( 4 + h ).

Well, I didn't call this ( f(x) ) but I think you get the idea, and then when ( x ) is ( 4 + h ), well this is going to be ( y ), and we just found the slope between these two points.

More Articles

View All
How volume changes from changing dimensions
So, I have a rectangular prism here and we’re given two of the dimensions. The width is two, the depth is three, and this height here, we’re just representing with an h. What we’re going to do in this video is think about how the volume of this rectangula…
How POV affects readers | Reading | Khan Academy
Hello readers! I want to talk to you today about point of view in literature and how it can shape what we as readers take away from a story. Now, we’ve talked about this in more basic terms before: Is a story in first, second, or third person? But I would…
15 Reasons Why Growing Up Rich is a Liability
If you grew up poor like we did, you certainly experienced firsthand what it’s like to never ask for anything, to be self-sufficient. But every single one of us, deep down, wished our family was rich. But you know how when you were little, you didn’t know…
Manifest Destiny | Period 5: 1844-1877 | AP US History | Khan Academy
This is a print showing San Francisco Harbor in 1848. There’s a little smattering of houses and a few boats in the water. It looks pretty peaceful, and it was. San Francisco only had about a thousand residents, and California had only newly become a U.S. …
Building Product, Talking to Users, and Growing with Adora Cheung (How to Start a Startup 2014: 4)
Thanks for having me! So
Cutting shapes into equal parts | Math | 3rd grade | Khan Academy
Is each piece equal to one-fourth of the area of the pie? So we have a pie, and it has one, two, three, four pieces. So it does have four pieces. So is one of those pieces equal to one-fourth of the pie? Well, let’s talk about what we mean when we have a…