yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Secant line with arbitrary difference (with simplification) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

A secant line intersects the curve ( y ) is equal to ( 2x^2 + 1 ) at two points with ( x ) coordinates ( 4 ) and ( 4 + h ), where ( h ) does not equal zero. What is the slope of the secant line in terms of ( h )? Your answer must be fully expanded and simplified.

So we know the two points that are on the secant line. It might not be obvious from how they wrote it, but let's make a little table here to make that a little bit clearer.

So we have ( x ) and then we have ( y ), which is equal to ( 2x^2 + 1 ). And we know that when ( x ) is equal to ( 4 ), well what is ( y ) going to be equal to? Well, it's going to be ( 2 \times 4^2 + 1 ), which is the same thing as ( 2 \times 16 + 1 ), which is the same thing as ( 32 + 1 ). So it is going to be ( 33 ).

What about when ( x ) is equal to ( 4 + h )? When ( x = 4 + h ), well it's going to be ( 2 \times (4 + h)^2 + 1 ). Well, that's going to be ( 2 \times (4 + h)^2 ) which is going to be ( 16 + 2 \times 4h ), so it's going to be ( 8h + h^2 ), and then we have our plus ( 1 ) still.

If we distribute the ( 2 ), that's going to get us to ( 32 + 16h + 2h^2 + 1 ). Then we add the ( 32 ) to the ( 1 ) and actually I'm going to switch the order a little bit so I have the highest degree term first. So it's going to be ( 2h^2 + 16h ) and then plus ( 32 + 1 ) is ( 33 ).

So we have these two points: we have ( (4, 33) ) and we have the other point ( (4 + h, 2h^2 + 16h + 33) ). We have to find the slope between these two points because the secant line contains both of these points.

So how do we find the slope of a line? Well, we do a change in ( y ) over change in ( x ). So it's our change in ( y ). Well, if we view this as the endpoint and this is the starting point, our change in ( y ) is going to be this minus that. So it's going to be ( 2h^2 + 16h + 33 - 33 ).

Those two are going to cancel each other out. Now, over what is our change in ( x )? Well, if we end it at ( 4 + h ), but then we started at ( 4 ), it's going to be ( (4 + h) - 4 ).

These two cancel with each other and we are left with ( 2h^2 + 16h ) over ( h ). Well, we can divide everything in the numerator and denominator by ( h ). What are we going to get? This is going to be ( 2h + 16 ) over ( 1 ) or just ( 2h + 16 ).

And we're done! This is the slope of the secant line in terms of ( h ). Once again, we just had to think about the secant line containing the points ( (4, f(4)) ) or ( 2 \times 4^2 + 1 ) right over here, and then ( 4 + h ).

Well, I didn't call this ( f(x) ) but I think you get the idea, and then when ( x ) is ( 4 + h ), well this is going to be ( y ), and we just found the slope between these two points.

More Articles

View All
Facebook's (Meta's) Secret World Domination Plan
Almost half of the world’s population uses one of Mela’s services every month. Facebook and Instagram combined hold over 75 percent of the social media market share, and WhatsApp has become the world’s default instant messaging app. This is the story of h…
How to Get and Evaluate Startup Ideas | Startup School
[Music] All right, hello everyone! I’ve got a lot of content to get through, so I’m gonna move fast. Buckle in! If you are looking for a startup idea right now, I’m going to try to help. But more importantly, I’m going to try to give you the conceptual t…
The Deadliest Thing in the Universe
13.8 billion years; that’s how long the universe has existed. Older than the planets, stars, as old as time itself. The universe is measurably vast. To put it into perspective, if we reduce that time scale down to a single year, the entirety of recorded h…
Factoring using polynomial division: missing term | Algebra 2 | Khan Academy
We’re told the polynomial ( p(x) ) which is equal to this has a known factor of ( x + 6 ). Rewrite ( p(x) ) as a product of linear factors. Pause this video and see if you can have a go at that. All right, now let’s work on this together. Because they gi…
Saving Albatross Chicks From Tsunamis and Rising Seas | National Geographic
The Laysan albatross chicks that we’re raising, they have a lot of personality. When you first look at them, you wouldn’t realize how much variation there is among different birds, but there really is. A feisty one, aren’t you? Yeah, he’s got lots of ener…
Interpreting expressions with multiple variables: Cylinder | Modeling | Algebra 2 | Khan Academy
We’re told that given the height h and volume v of a certain cylinder, Jill uses the formula ( r ) is equal to the square root of ( \frac{v}{\pi h} ) to compute its radius to be 20 meters. If a second cylinder has the same volume as the first but is 100 t…