yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Calculating equilibrium concentrations from initial concentrations | Khan Academy


3m read
·Nov 10, 2024

For the reaction bromine gas plus chlorine gas goes to BrCl, Kc is equal to 7.0 at 400 Kelvin. If the initial concentration of bromine is 0.60 Molar and the initial concentration of chlorine is also 0.60 Molar, our goal is to calculate the equilibrium concentrations of Br₂, Cl₂, and BrCl.

To help us find the equilibrium concentrations, we're going to use an ICE table, where I stands for the initial concentration, C stands for the change in concentration, and E stands for equilibrium concentration. For the initial concentrations, we have 0.60 Molar for bromine, 0.60 Molar for chlorine, and if we assume the reaction hasn't started yet, then we're going to put a zero for our product, BrCl.

Next, we think about Br₂ reacting with Cl₂ to form BrCl. Some of the bromine is going to react, but we don't know how much, so we're going to call that amount x. When we form our product, we are going to lose some of that bromine, so we're going to write minus x under bromine in our ICE table.

Next, we think about mole ratios in the balanced equation. It's a one to one mole ratio of bromine to chlorine. Therefore, if we're losing x for bromine, we're also going to lose x for chlorine, so I can write minus x under chlorine in the ICE table.

When Br₂ and Cl₂ react together, we lose our reactants, and that means they're going to gain some of our products. To figure out how much, we need to look at mole ratios. The mole ratio of bromine to BrCl is one to two. Therefore, if we're losing x for Br₂, we must be gaining 2x for BrCl, so I can go ahead and write plus 2x under BrCl.

Next, let's think about equilibrium concentrations. If the initial concentration of bromine is 0.60 and we're losing x, the equilibrium concentration must be 0.60 minus x. The same thing for chlorine; it would be 0.60 minus x. For BrCl, we started off with 0 and we gained 2x; therefore, at equilibrium, the equilibrium concentration would be equal to just 2x.

The next step is to use the balanced equation to write an equilibrium constant expression. So we would write Kc is equal to (concentration of BrCl)² divided by (concentration of Br₂)¹ times (concentration of Cl₂)¹. The concentrations in an equilibrium constant expression are equilibrium concentrations.

Therefore, we can plug in the equilibrium concentrations from our ICE table. The equilibrium concentration for BrCl was 2x, the equilibrium concentration for Br₂ was 0.60 minus x, and the same for chlorine, so we can plug that in as well. Here we have our equilibrium concentrations plugged into our equilibrium constant expression, and also Kc was equal to 7.0 for this reaction at 400 Kelvin, so 7.0 is plugged in for Kc.

Our goal is to solve for x, and I've rewritten it down here because (0.60 minus x)² is equal to (0.60 minus x)². If we write it this way, it's a little easier to see that we can solve for x by taking the square root of both sides. So let's go ahead and take the square root of both sides and solve for x.

Taking the square root of both sides gives us 2.65 is equal to (2x) / (0.60 minus x). To solve for x, we would then multiply both sides by (0.60 minus x) to give us this, and then after a little more algebra, we get 1.59 is equal to 4.65x.

So x is equal to 1.59 divided by 4.65, which is equal to 0.34. Now that we know that x is equal to 0.34, we can plug that into our ICE table and solve for our equilibrium concentrations.

For the equilibrium concentration of Br₂, it's 0.60 minus x, so that's 0.60 minus 0.34, which is equal to 0.26 Molar. So 0.26 Molar is the equilibrium concentration for bromine. For chlorine, it would be the same calculation: 0.60 minus x would be 0.60 minus 0.34, so the equilibrium concentration of chlorine is also 0.26 Molar.

For BrCl, it's 2 times x, so that's 2 times 0.34, which is equal to 0.68 Molar. So 0.68 Molar is the equilibrium concentration for BrCl.

More Articles

View All
Proof of the derivative of sin(x) | Derivatives introduction | AP Calculus AB | Khan Academy
What we have written here are two of the most useful derivatives to know in calculus. If you know that the derivative of sine of x with respect to x is cosine of x and the derivative of cosine of x with respect to x is negative sine of x, that can empower…
Volume with cross sections: squares and rectangles (no graph) | AP Calculus AB | Khan Academy
The base of a solid is the region enclosed by the graphs of ( y = -x^2 + 6x - 1 ) and ( y = 4 ). Cross sections of the solid perpendicular to the x-axis are rectangles whose height is ( x ). Express the volume of the solid with a definite integral. So pau…
Does money make you happy?
Does money bring happiness? Listen, I’ll tell you one thing: it gets rid of a lot of problems that can cause unhappiness. If there is any popular opinion that says you don’t need money to be happy, of course, you don’t need money to be happy. There’s a l…
15 Skills That Pay Off Forever
The skills that we’re talking about here today have the largest impact on both your personal and professional life. They stick with you for your entire life and will continuously improve the quality of your existence. Most of them are a bit difficult to m…
Khanmigo for Districts
[Music] Introducing Con Migo for districts. Khan Academy’s AI-powered student tutor and teaching assistant is paving the way for a new era of learning in the classroom. I could see it as a teacher virtual assistant. I could see it as a virtual assistant …
Protons, neutrons, and electrons in atoms | High school chemistry | Khan Academy
Everything in our world is made up of atoms. Yep, everything from the air we breathe to the water we drink, even the materials inside our cell phones. But what are atoms exactly? What’s inside of these atoms? What makes an atom an atom? Atoms are tiny pa…