yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Calculating equilibrium concentrations from initial concentrations | Khan Academy


3m read
·Nov 10, 2024

For the reaction bromine gas plus chlorine gas goes to BrCl, Kc is equal to 7.0 at 400 Kelvin. If the initial concentration of bromine is 0.60 Molar and the initial concentration of chlorine is also 0.60 Molar, our goal is to calculate the equilibrium concentrations of Br₂, Cl₂, and BrCl.

To help us find the equilibrium concentrations, we're going to use an ICE table, where I stands for the initial concentration, C stands for the change in concentration, and E stands for equilibrium concentration. For the initial concentrations, we have 0.60 Molar for bromine, 0.60 Molar for chlorine, and if we assume the reaction hasn't started yet, then we're going to put a zero for our product, BrCl.

Next, we think about Br₂ reacting with Cl₂ to form BrCl. Some of the bromine is going to react, but we don't know how much, so we're going to call that amount x. When we form our product, we are going to lose some of that bromine, so we're going to write minus x under bromine in our ICE table.

Next, we think about mole ratios in the balanced equation. It's a one to one mole ratio of bromine to chlorine. Therefore, if we're losing x for bromine, we're also going to lose x for chlorine, so I can write minus x under chlorine in the ICE table.

When Br₂ and Cl₂ react together, we lose our reactants, and that means they're going to gain some of our products. To figure out how much, we need to look at mole ratios. The mole ratio of bromine to BrCl is one to two. Therefore, if we're losing x for Br₂, we must be gaining 2x for BrCl, so I can go ahead and write plus 2x under BrCl.

Next, let's think about equilibrium concentrations. If the initial concentration of bromine is 0.60 and we're losing x, the equilibrium concentration must be 0.60 minus x. The same thing for chlorine; it would be 0.60 minus x. For BrCl, we started off with 0 and we gained 2x; therefore, at equilibrium, the equilibrium concentration would be equal to just 2x.

The next step is to use the balanced equation to write an equilibrium constant expression. So we would write Kc is equal to (concentration of BrCl)² divided by (concentration of Br₂)¹ times (concentration of Cl₂)¹. The concentrations in an equilibrium constant expression are equilibrium concentrations.

Therefore, we can plug in the equilibrium concentrations from our ICE table. The equilibrium concentration for BrCl was 2x, the equilibrium concentration for Br₂ was 0.60 minus x, and the same for chlorine, so we can plug that in as well. Here we have our equilibrium concentrations plugged into our equilibrium constant expression, and also Kc was equal to 7.0 for this reaction at 400 Kelvin, so 7.0 is plugged in for Kc.

Our goal is to solve for x, and I've rewritten it down here because (0.60 minus x)² is equal to (0.60 minus x)². If we write it this way, it's a little easier to see that we can solve for x by taking the square root of both sides. So let's go ahead and take the square root of both sides and solve for x.

Taking the square root of both sides gives us 2.65 is equal to (2x) / (0.60 minus x). To solve for x, we would then multiply both sides by (0.60 minus x) to give us this, and then after a little more algebra, we get 1.59 is equal to 4.65x.

So x is equal to 1.59 divided by 4.65, which is equal to 0.34. Now that we know that x is equal to 0.34, we can plug that into our ICE table and solve for our equilibrium concentrations.

For the equilibrium concentration of Br₂, it's 0.60 minus x, so that's 0.60 minus 0.34, which is equal to 0.26 Molar. So 0.26 Molar is the equilibrium concentration for bromine. For chlorine, it would be the same calculation: 0.60 minus x would be 0.60 minus 0.34, so the equilibrium concentration of chlorine is also 0.26 Molar.

For BrCl, it's 2 times x, so that's 2 times 0.34, which is equal to 0.68 Molar. So 0.68 Molar is the equilibrium concentration for BrCl.

More Articles

View All
Budgeting and the 50:30:20 rule | Budgeting | Financial Literacy | Khan Academy
Hi everyone, Sal here, and I want to talk a little bit about budgeting. So, at a very high level, a budget is a way of keeping track of how much money you’re bringing in and how much you are spending. The reason why you want to do it is you, at the most …
Explorers Festival, Saturday June 17 | National Geographic
From a distance, it always seems impossible. But impossible is a place we haven’t been to yet. Impossible is what beckons us to go further, to explore. It calls us from the wild, lures us into the unknown, asks us to dig deeper, to look at things from new…
What are SMART goals and why do they matter? | Financial goals | Financial Literacy | Khan Academy
So let’s talk a little bit about smart goals when it comes to your finances. When I say smart goals, I’m not just saying well-thought-out or intelligent goals, although I guess it could be that. I’m talking about the acronym S-M-A-R-T: smart goals. Now, …
P-values and significance tests | AP Statistics | Khan Academy
Let’s say that I run a website that currently has this off-white color for its background, and I know the mean amount of time that people spend on my website. Let’s say it is 20 minutes, and I’m interested in making a change that will make people spend mo…
What Makes Gum Chewy? | Ingredients With George Zaidan (Episode 5)
What’s in gum that makes it so chewy? How does this chewy stuff work? And can I make it from scratch? Inside your ingredients, chewing gum is one of the weirdest things we put in our mouths. I mean, think about your mouth for a second. Your teeth are har…
YOU LIVE IN THE PAST
Hey, Vsauce, Michael here, and today we are going to be talking about the past. But not like history—in fact—we will be talking about what we call now. This very newest moment in time, and the fact that we can never really be aware of or live in what we c…