yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Recursive formulas for arithmetic sequences | Mathematics I | High School Math | Khan Academy


2m read
·Nov 11, 2024

G is a function that describes an arithmetic sequence. Here are the first few terms of the sequence: the first term is four, the second term is three and four-fifths, the third term is three and three-fifths, and the fourth term is three and two-fifths.

Find the values of the missing parameters a and b in the following recursive definition of the sequence. So they say the nth term is going to be equal to a if n is equal to 1, and it's going to be equal to g of n minus 1 plus b if n is greater than 1.

I encourage you to pause this video and see if you can figure out what a and b are going to be.

Well, the first one to figure out a is actually pretty straightforward. If n is equal to one, the first term when n equals one is four, so a is equal to four. We could write this as g of n is equal to 4 if n is equal to 1.

Now let's think about the second line. The second line is interesting. It's saying it's going to be equal to the previous term g of n minus 1. This means the n minus 1 term plus b will give you the nth term.

Let's just think about what's happening with this arithmetic sequence. When I go from the first term to the second term, what have I done? I have, it looks like I've subtracted one-fifth, so minus one-fifth. It's an arithmetic sequence, so I should subtract or add the same amount every time, and I am. I'm subtracting one-fifth.

So one way to think about it is, if we were to go the other way, we could say, for example, that g of 4 is equal to g of 3 minus one-fifth. You see that right over here? g of three is this; you subtract one-fifth, you get g of four.

Of course, I could have written this like g of 4 is equal to g of 4 minus 1 minus one-fifth. So when you look at it this way, you could see that if I'm trying to find the nth term, it's going to be the n minus 1 term plus negative one-fifth.

So b is negative one-fifth. Once again, if I'm trying to find the fourth term, if n is equal to four, I'm not going to use this first case because this has to be for n equals one.

If n equals four, I would use the second case, so it would be g of four minus one. It would be g of three minus one-fifth.

So we could say, g of n is equal to g of n minus one, the term right before that minus one-fifth if n is greater than one.

For the sake of this problem, we see that a is equal to four and b is equal to negative one-fifth.

More Articles

View All
Peter Lynch: How to Invest Small Amounts of Money
I think the public can do extremely well in the stock market on their own. I think the fact that institutions dominate the market today is a positive for small investors. These institutions push stocks on usual lows; they push them on usual highs. For som…
Reframing Black History and Culture | Podcast | Overheard at National Geographic
[Music] I’m Deborah Adam Simmons, executive editor for history and culture at National Geographic. You’re listening to In Conversation, a special episode exploring black history and culture. [Music] Hey, Deborah! Welcome to Overheard. Hi, Amy! Thanks! I…
LESSONS FROM STOICISM TO STAY CALM | THE ART OF SERENITY REVEALED | STOICISM INSIGHTS
The art of temperance is the great mastery of choosing to resist rather than to respond. It is the ability to make deliberate decisions as opposed to impulsive ones. In the stoic state, along with wisdom, temperance is one of the four essential virtues. …
Cosine, sine and tangent of π/6 and π/3
In this video, we’re going to figure out what the sine, cosine, and tangent of two very important angles are. Angles that you’ll see a lot in your trigonometric studies, and just in general, in your regular life. So these are the angles pi over 3 radians …
Graphing circles from features | Mathematics II | High School Math | Khan Academy
We’re asked to graph the circle which is centered at (3, -2) and has a radius of five units. I got this exercise off of the Con Academy “Graph a Circle According to Its Features” exercise. It’s a pretty neat little widget here because what I can do is I c…
Interesting example of Aliasing
Okay, I stuck a moment without the kids to do this for you. I’m going to show you a principle called aliasing. Aliasing is when your sample rate of your measuring device is not fast enough to actually catch the true frequency of what’s happening, so you c…