yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of trig function | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So let's see if we can evaluate the definite integral from ( \frac{11\pi}{2} ) to ( 6\pi ) of ( 9 \sin(x) , dx ).

The first thing, let's see if we can take the anti-derivative of ( 9 \sin(x) ). We could use some of our integration properties to simplify this a little bit. So this is going to be equal to; this is the same thing as ( 9 ) times the integral from ( \frac{11\pi}{2} ) to ( 6\pi ) of ( \sin(x) , dx ).

And what's the anti-derivative of ( \sin(x) )? Well, we know from our derivatives that the derivative with respect to ( x ) of ( \cos(x) ) is equal to negative ( \sin(x) ). So can we construct this in some way?

This is a negative ( \sin(x) ). Well, what if I multiplied on the inside? What if I multiplied it by a negative ( 1 )? Well, I can't just multiply only one place by negative ( 1 ); I need to multiply by negative ( 1 ) twice so I'm not changing its value. So what if I said negative ( 9 ) times negative ( \sin(x) )? Well, this is still going to be ( 9 \sin(x) ). If you took negative ( 9 ) times negative ( \sin(x) ), it is ( 9 \sin(x) ).

And I did it this way because now negative ( \sin(x) ) matches the derivative of ( \cos(x) ). So we could say that this is all going to be equal to; it's all going to be equal to, you have your negative ( 9 ) out front, negative ( 9 ) times; and I'll put it in brackets, negative ( 9 ) times the anti-derivative of negative ( \sin(x) ). Well, that is just going to be ( \cos(x) ), and we're going to evaluate it at its bounds.

We're going to evaluate it at ( 6\pi ), and we do that in a color I haven't used yet. We're going to do that at ( 6\pi ), and we're also going to do that at ( \frac{11\pi}{2} ). So this is going to be equal to; this is equal to negative ( 9 ) times; I'm going to create some space here, so actually, that's probably more space than I need; it's going to be ( \cos(6\pi) ) minus ( \cos\left(\frac{11\pi}{2}\right) ).

Well, what is ( \cos(6\pi) ) going to be? Well, cosine of any multiple of ( 2\pi ) is going to be equal to ( 1 ). You could view ( 6\pi ) as going around the unit circle ( 3 ) times, so this is the same thing as ( \cos(2\pi) ) or the same thing as ( \cos(0) ), so that is going to be equal to ( 1 ).

If that seems unfamiliar to you, I encourage you to review the unit circle definition of cosine. And what is ( \cos\left(\frac{11\pi}{2}\right) )? Let's see, let's subtract some multiple of ( 2\pi ) here to put it in values that we can understand better.

So this is—let me write it here—( \cos\left(\frac{11\pi}{2}\right) ) that is the same thing as; let's see if we were to subtract this; this is the same thing as ( \frac{11\pi}{2} - 5\frac{\pi}{2} ) right? Yeah. So this is—so we could view this as we could subtract ( 4\pi ) which is going to be; we could write that as ( \frac{8\pi}{2} ). In fact, no, let's subtract ( 4\pi ), which is ( \frac{8\pi}{2} ).

So once again, I'm just subtracting a multiple of ( 2\pi ), which isn't going to change the value of cosine, and so this is going to be equal to ( \cos\left(\frac{3\pi}{2}\right) ).

And if we imagine the unit circle, let me draw the unit circle here; so it's my ( y )-axis, my ( x )-axis, and then I have the unit circle. So, whoops, all right, the unit circle just like that. So if we start at—this is ( 0 ), then you go to ( \frac{\pi}{2} ), then you go to ( \pi ), then you go to ( \frac{3\pi}{2} ). So that's this point on the unit circle, so the cosine is the ( x )-coordinate. So this is going to be zero. This is zero.

So we get ( 1 - 0 ), so everything in the brackets evaluates out to ( 1 ). And so we are left with, so let me do that; so all of this is equal to ( 1 ). And so you have negative ( 9 ) times ( 1 ), which of course is just negative ( 9 ), is what this definite integral evaluates to.

More Articles

View All
1999 Berkshire Hathaway Annual Meeting (Full Version)
[Applause] Good morning! Really delighted we can have this many people come out for a meeting. It says something, I think, about the way you regard yourself as owners. We’re going to hustle through the business meeting and then Charlie and I will be here …
Space Archaeology: A New Frontier of Exploration | National Geographic
(light ethereal music) We are the detectives of the past. And we have to figure out what happened. That is what is fascinating about archaeology. Peru is super special archaeologically because this is one of the cradles of civilization. It’s where civili…
Free Markets Are Intrinsic to Humans
Overall, capitalism is intrinsic to the human species. Capitalism is not something we invented; capitalism is not even something we discovered. It is innate to us. In every exchange that we have, when you and I exchange information, I want some informatio…
Making Something Social Destroys the Truth of It
Making something social destroys the truth of it because social groups need consensus to survive. Otherwise, they fight; they can’t get along. Consensus is all about compromise, not about truth-seeking. Science was this unique discipline, at least in Natu…
Vietnam's Ha Long Bay Is a Spectacular Garden of Islands | National Geographic
[Music] 1600 islands thick with greenery form a maze of channels in the azure waters of Ha Long Bay off northeastern Vietnam. For centuries, this spectacular seascape has inspired wonder. [Music] Although people have lived in this region for thousands of…
Homeroom with Sal & David Sinclair, PhD - Tuesday, July 14
Hi everyone! Welcome to our homeroom livestream. Very excited about the conversation we’re about to have. But I will start with my standard announcements, reminding everyone that we at Khan Academy we’re a 501c3. We’re a not-for-profit; we can only exist …