yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of trig function | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So let's see if we can evaluate the definite integral from ( \frac{11\pi}{2} ) to ( 6\pi ) of ( 9 \sin(x) , dx ).

The first thing, let's see if we can take the anti-derivative of ( 9 \sin(x) ). We could use some of our integration properties to simplify this a little bit. So this is going to be equal to; this is the same thing as ( 9 ) times the integral from ( \frac{11\pi}{2} ) to ( 6\pi ) of ( \sin(x) , dx ).

And what's the anti-derivative of ( \sin(x) )? Well, we know from our derivatives that the derivative with respect to ( x ) of ( \cos(x) ) is equal to negative ( \sin(x) ). So can we construct this in some way?

This is a negative ( \sin(x) ). Well, what if I multiplied on the inside? What if I multiplied it by a negative ( 1 )? Well, I can't just multiply only one place by negative ( 1 ); I need to multiply by negative ( 1 ) twice so I'm not changing its value. So what if I said negative ( 9 ) times negative ( \sin(x) )? Well, this is still going to be ( 9 \sin(x) ). If you took negative ( 9 ) times negative ( \sin(x) ), it is ( 9 \sin(x) ).

And I did it this way because now negative ( \sin(x) ) matches the derivative of ( \cos(x) ). So we could say that this is all going to be equal to; it's all going to be equal to, you have your negative ( 9 ) out front, negative ( 9 ) times; and I'll put it in brackets, negative ( 9 ) times the anti-derivative of negative ( \sin(x) ). Well, that is just going to be ( \cos(x) ), and we're going to evaluate it at its bounds.

We're going to evaluate it at ( 6\pi ), and we do that in a color I haven't used yet. We're going to do that at ( 6\pi ), and we're also going to do that at ( \frac{11\pi}{2} ). So this is going to be equal to; this is equal to negative ( 9 ) times; I'm going to create some space here, so actually, that's probably more space than I need; it's going to be ( \cos(6\pi) ) minus ( \cos\left(\frac{11\pi}{2}\right) ).

Well, what is ( \cos(6\pi) ) going to be? Well, cosine of any multiple of ( 2\pi ) is going to be equal to ( 1 ). You could view ( 6\pi ) as going around the unit circle ( 3 ) times, so this is the same thing as ( \cos(2\pi) ) or the same thing as ( \cos(0) ), so that is going to be equal to ( 1 ).

If that seems unfamiliar to you, I encourage you to review the unit circle definition of cosine. And what is ( \cos\left(\frac{11\pi}{2}\right) )? Let's see, let's subtract some multiple of ( 2\pi ) here to put it in values that we can understand better.

So this is—let me write it here—( \cos\left(\frac{11\pi}{2}\right) ) that is the same thing as; let's see if we were to subtract this; this is the same thing as ( \frac{11\pi}{2} - 5\frac{\pi}{2} ) right? Yeah. So this is—so we could view this as we could subtract ( 4\pi ) which is going to be; we could write that as ( \frac{8\pi}{2} ). In fact, no, let's subtract ( 4\pi ), which is ( \frac{8\pi}{2} ).

So once again, I'm just subtracting a multiple of ( 2\pi ), which isn't going to change the value of cosine, and so this is going to be equal to ( \cos\left(\frac{3\pi}{2}\right) ).

And if we imagine the unit circle, let me draw the unit circle here; so it's my ( y )-axis, my ( x )-axis, and then I have the unit circle. So, whoops, all right, the unit circle just like that. So if we start at—this is ( 0 ), then you go to ( \frac{\pi}{2} ), then you go to ( \pi ), then you go to ( \frac{3\pi}{2} ). So that's this point on the unit circle, so the cosine is the ( x )-coordinate. So this is going to be zero. This is zero.

So we get ( 1 - 0 ), so everything in the brackets evaluates out to ( 1 ). And so we are left with, so let me do that; so all of this is equal to ( 1 ). And so you have negative ( 9 ) times ( 1 ), which of course is just negative ( 9 ), is what this definite integral evaluates to.

More Articles

View All
This Is How Old You Are | Brain Games
Brain games is going on vacation! We’ve come to the beach to see how your brain is primed to handle every chapter of life—your tween and teen years, adulthood, parenthood, and even your golden years. Let’s play a game that will show you just what stage o…
Sal Khan and Francis Ford Coppola fireside chat
All right, so very exciting, uh, we’re here at Khan Academy with the team, and we have some students from Khan Lab School as well, uh, with, uh, the I’d say legendary Francis Ford Coppola, uh, most known for film making. Uh, I, you know, obviously The Go…
RC natural response example (3 of 3)
We just derived what the current is and the voltage. These are both the natural response of the RC. Now, what I did is I went ahead and I plotted out this using a computer, just using Excel to plot out what these two expressions look like. Let me show you…
How to Pronounce Uranus
Hello Internet! In my last video about Pluto, you may have noticed that I said aloud the names of every planet except one: This one. And that was no accident, but rather the result of careful script editing. Because, where I grew up, I learned that the na…
Why We're Jerks Online
Hello everyone! October 2019 is over, which means that it’s time for the next Q&A. As most of you know, there’s a Patreon edition and a public edition. In this public edition, I’ll talk about the effect of the internet in regards to the shadow, which …
Causation from 1980-2020
From our first lesson focusing on the migration of indigenous people to the land mass that today comprises the United States, we’ve made it all the way to the present. A journey in time of more than 15,000 years. We’ve looked most closely at the last 500 …