yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of trig function | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So let's see if we can evaluate the definite integral from ( \frac{11\pi}{2} ) to ( 6\pi ) of ( 9 \sin(x) , dx ).

The first thing, let's see if we can take the anti-derivative of ( 9 \sin(x) ). We could use some of our integration properties to simplify this a little bit. So this is going to be equal to; this is the same thing as ( 9 ) times the integral from ( \frac{11\pi}{2} ) to ( 6\pi ) of ( \sin(x) , dx ).

And what's the anti-derivative of ( \sin(x) )? Well, we know from our derivatives that the derivative with respect to ( x ) of ( \cos(x) ) is equal to negative ( \sin(x) ). So can we construct this in some way?

This is a negative ( \sin(x) ). Well, what if I multiplied on the inside? What if I multiplied it by a negative ( 1 )? Well, I can't just multiply only one place by negative ( 1 ); I need to multiply by negative ( 1 ) twice so I'm not changing its value. So what if I said negative ( 9 ) times negative ( \sin(x) )? Well, this is still going to be ( 9 \sin(x) ). If you took negative ( 9 ) times negative ( \sin(x) ), it is ( 9 \sin(x) ).

And I did it this way because now negative ( \sin(x) ) matches the derivative of ( \cos(x) ). So we could say that this is all going to be equal to; it's all going to be equal to, you have your negative ( 9 ) out front, negative ( 9 ) times; and I'll put it in brackets, negative ( 9 ) times the anti-derivative of negative ( \sin(x) ). Well, that is just going to be ( \cos(x) ), and we're going to evaluate it at its bounds.

We're going to evaluate it at ( 6\pi ), and we do that in a color I haven't used yet. We're going to do that at ( 6\pi ), and we're also going to do that at ( \frac{11\pi}{2} ). So this is going to be equal to; this is equal to negative ( 9 ) times; I'm going to create some space here, so actually, that's probably more space than I need; it's going to be ( \cos(6\pi) ) minus ( \cos\left(\frac{11\pi}{2}\right) ).

Well, what is ( \cos(6\pi) ) going to be? Well, cosine of any multiple of ( 2\pi ) is going to be equal to ( 1 ). You could view ( 6\pi ) as going around the unit circle ( 3 ) times, so this is the same thing as ( \cos(2\pi) ) or the same thing as ( \cos(0) ), so that is going to be equal to ( 1 ).

If that seems unfamiliar to you, I encourage you to review the unit circle definition of cosine. And what is ( \cos\left(\frac{11\pi}{2}\right) )? Let's see, let's subtract some multiple of ( 2\pi ) here to put it in values that we can understand better.

So this is—let me write it here—( \cos\left(\frac{11\pi}{2}\right) ) that is the same thing as; let's see if we were to subtract this; this is the same thing as ( \frac{11\pi}{2} - 5\frac{\pi}{2} ) right? Yeah. So this is—so we could view this as we could subtract ( 4\pi ) which is going to be; we could write that as ( \frac{8\pi}{2} ). In fact, no, let's subtract ( 4\pi ), which is ( \frac{8\pi}{2} ).

So once again, I'm just subtracting a multiple of ( 2\pi ), which isn't going to change the value of cosine, and so this is going to be equal to ( \cos\left(\frac{3\pi}{2}\right) ).

And if we imagine the unit circle, let me draw the unit circle here; so it's my ( y )-axis, my ( x )-axis, and then I have the unit circle. So, whoops, all right, the unit circle just like that. So if we start at—this is ( 0 ), then you go to ( \frac{\pi}{2} ), then you go to ( \pi ), then you go to ( \frac{3\pi}{2} ). So that's this point on the unit circle, so the cosine is the ( x )-coordinate. So this is going to be zero. This is zero.

So we get ( 1 - 0 ), so everything in the brackets evaluates out to ( 1 ). And so we are left with, so let me do that; so all of this is equal to ( 1 ). And so you have negative ( 9 ) times ( 1 ), which of course is just negative ( 9 ), is what this definite integral evaluates to.

More Articles

View All
Choosing between its and it’s | The Apostrophe | Punctuation | Khan Academy
Hello Garans and hello Paige. Hi David! So, what are we working on today? Today, we’re going to talk about the difference between “its” and “it’s.” Oh, well, that sounds real tricky! Yeah, but we’ll be okay. Okay, so “it’s” with an apostrophe. So we ha…
Spanish colonization | Period 1: 1491-1607 | AP US History | Khan Academy
[Instructor] Imagine that one day you are standing in your backyard when all of a sudden you saw an alien ship land, and the alien ship had incredible technology. You saw aliens walking out of the ship, bearing strange animals, maybe scary looking weapons…
BlackRock - The company that owns the world?
Narrator: There’s a good chance you’ve never heard of BlackRock. Founded in only 1988 in less than 30 years this American financial firm would grow to become “the company that owns the world” managing assets worth 6,3 trillion dollars. These are assets t…
2015 AP Calculus AB/BC 4cd | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Part C: Let y equals f of x be the particular solution to the differential equation, with the initial condition f of two is equal to three. Does f have a relative minimum, a relative maximum, or neither at x equals 2? Justify your answer. Well, to think …
YC Fireside: Surbhi Sarna + Reshma Shetty and Jason Kelly - Founders of Ginkgo Bioworks
Hi, welcome Reshma and Jason and everybody on the call. Hi, my gosh, I am so excited to chat with the two of you, pioneers in the field of synthetic biology. So to kick us off, the audience today is going to be a mix of people with a tech background and …
Identifying composite functions | Derivative rules | AP Calculus AB | Khan Academy
We’re going to do in this video is review the notion of composite functions and then build some skills recognizing how functions can actually be composed. If you’ve never heard of the term composite functions, or if the first few minutes of this video loo…