yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of trig function | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So let's see if we can evaluate the definite integral from ( \frac{11\pi}{2} ) to ( 6\pi ) of ( 9 \sin(x) , dx ).

The first thing, let's see if we can take the anti-derivative of ( 9 \sin(x) ). We could use some of our integration properties to simplify this a little bit. So this is going to be equal to; this is the same thing as ( 9 ) times the integral from ( \frac{11\pi}{2} ) to ( 6\pi ) of ( \sin(x) , dx ).

And what's the anti-derivative of ( \sin(x) )? Well, we know from our derivatives that the derivative with respect to ( x ) of ( \cos(x) ) is equal to negative ( \sin(x) ). So can we construct this in some way?

This is a negative ( \sin(x) ). Well, what if I multiplied on the inside? What if I multiplied it by a negative ( 1 )? Well, I can't just multiply only one place by negative ( 1 ); I need to multiply by negative ( 1 ) twice so I'm not changing its value. So what if I said negative ( 9 ) times negative ( \sin(x) )? Well, this is still going to be ( 9 \sin(x) ). If you took negative ( 9 ) times negative ( \sin(x) ), it is ( 9 \sin(x) ).

And I did it this way because now negative ( \sin(x) ) matches the derivative of ( \cos(x) ). So we could say that this is all going to be equal to; it's all going to be equal to, you have your negative ( 9 ) out front, negative ( 9 ) times; and I'll put it in brackets, negative ( 9 ) times the anti-derivative of negative ( \sin(x) ). Well, that is just going to be ( \cos(x) ), and we're going to evaluate it at its bounds.

We're going to evaluate it at ( 6\pi ), and we do that in a color I haven't used yet. We're going to do that at ( 6\pi ), and we're also going to do that at ( \frac{11\pi}{2} ). So this is going to be equal to; this is equal to negative ( 9 ) times; I'm going to create some space here, so actually, that's probably more space than I need; it's going to be ( \cos(6\pi) ) minus ( \cos\left(\frac{11\pi}{2}\right) ).

Well, what is ( \cos(6\pi) ) going to be? Well, cosine of any multiple of ( 2\pi ) is going to be equal to ( 1 ). You could view ( 6\pi ) as going around the unit circle ( 3 ) times, so this is the same thing as ( \cos(2\pi) ) or the same thing as ( \cos(0) ), so that is going to be equal to ( 1 ).

If that seems unfamiliar to you, I encourage you to review the unit circle definition of cosine. And what is ( \cos\left(\frac{11\pi}{2}\right) )? Let's see, let's subtract some multiple of ( 2\pi ) here to put it in values that we can understand better.

So this is—let me write it here—( \cos\left(\frac{11\pi}{2}\right) ) that is the same thing as; let's see if we were to subtract this; this is the same thing as ( \frac{11\pi}{2} - 5\frac{\pi}{2} ) right? Yeah. So this is—so we could view this as we could subtract ( 4\pi ) which is going to be; we could write that as ( \frac{8\pi}{2} ). In fact, no, let's subtract ( 4\pi ), which is ( \frac{8\pi}{2} ).

So once again, I'm just subtracting a multiple of ( 2\pi ), which isn't going to change the value of cosine, and so this is going to be equal to ( \cos\left(\frac{3\pi}{2}\right) ).

And if we imagine the unit circle, let me draw the unit circle here; so it's my ( y )-axis, my ( x )-axis, and then I have the unit circle. So, whoops, all right, the unit circle just like that. So if we start at—this is ( 0 ), then you go to ( \frac{\pi}{2} ), then you go to ( \pi ), then you go to ( \frac{3\pi}{2} ). So that's this point on the unit circle, so the cosine is the ( x )-coordinate. So this is going to be zero. This is zero.

So we get ( 1 - 0 ), so everything in the brackets evaluates out to ( 1 ). And so we are left with, so let me do that; so all of this is equal to ( 1 ). And so you have negative ( 9 ) times ( 1 ), which of course is just negative ( 9 ), is what this definite integral evaluates to.

More Articles

View All
FRENCH KISS A ROBOT! Mind Blow #16
The N64 upside down looks like a koala’s face. And here’s a wall that changes color when you pee on it. Vsauce. Kevin here. This is Mind Blow. This jet pack of sorts just set a record by flying for seven straight minutes. The company claims their current…
Will COVID-19 Kill the Music Industry? | Ask Mr. Wonderful #25 Kevin O'Leary ft CEO of Rolling Stone
Hello everybody, and welcome to another episode of Ask Mr. Wonderful. Who’s my guest? This is fantastic! It’s Gus Winner, son of Young Winner, founder of Rolling Stone magazine, cultural icon, rock and roll music, fashion, politics— you name it! So much t…
15 Things That Instantly Grant Status
Status is a why you think other people are better than you. Everybody wants status because it’s been ingrained in our evolution, self-actualization, and peer appreciation, said at the very top of Maslow’s Pyramid of Needs. Usually, status is built throug…
Gen X Reacts to AIDS | Generation X
In 1985, Rock Hudson, Hollywood heartthrob, becomes the face of AIDS, and overnight the epidemic is no longer anonymous. I was on the set of The Breakfast Club when I heard about Rock Hudson, and to me, that sort of changed everything. It kind of finally …
Solving 3-digit addition in your head | 2nd grade | Khan Academy
[Voiceover] What I want to do in this video is go over some techniques for doing mental addition. Now, if I saw something like 355 plus 480, if you have some paper around, you could write these numbers down and do your traditional addition, but you might …
Meteor Showers 101 | National Geographic
(Haunting music) - [Narrator] Nearly 50 tons of space debris crash onto the Earth every day. While some debris shyly dissipate into the atmosphere, others display a spectacular light show. (Mellow music) Meteor showers occur when the Earth’s orbit inters…