yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of trig function | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So let's see if we can evaluate the definite integral from ( \frac{11\pi}{2} ) to ( 6\pi ) of ( 9 \sin(x) , dx ).

The first thing, let's see if we can take the anti-derivative of ( 9 \sin(x) ). We could use some of our integration properties to simplify this a little bit. So this is going to be equal to; this is the same thing as ( 9 ) times the integral from ( \frac{11\pi}{2} ) to ( 6\pi ) of ( \sin(x) , dx ).

And what's the anti-derivative of ( \sin(x) )? Well, we know from our derivatives that the derivative with respect to ( x ) of ( \cos(x) ) is equal to negative ( \sin(x) ). So can we construct this in some way?

This is a negative ( \sin(x) ). Well, what if I multiplied on the inside? What if I multiplied it by a negative ( 1 )? Well, I can't just multiply only one place by negative ( 1 ); I need to multiply by negative ( 1 ) twice so I'm not changing its value. So what if I said negative ( 9 ) times negative ( \sin(x) )? Well, this is still going to be ( 9 \sin(x) ). If you took negative ( 9 ) times negative ( \sin(x) ), it is ( 9 \sin(x) ).

And I did it this way because now negative ( \sin(x) ) matches the derivative of ( \cos(x) ). So we could say that this is all going to be equal to; it's all going to be equal to, you have your negative ( 9 ) out front, negative ( 9 ) times; and I'll put it in brackets, negative ( 9 ) times the anti-derivative of negative ( \sin(x) ). Well, that is just going to be ( \cos(x) ), and we're going to evaluate it at its bounds.

We're going to evaluate it at ( 6\pi ), and we do that in a color I haven't used yet. We're going to do that at ( 6\pi ), and we're also going to do that at ( \frac{11\pi}{2} ). So this is going to be equal to; this is equal to negative ( 9 ) times; I'm going to create some space here, so actually, that's probably more space than I need; it's going to be ( \cos(6\pi) ) minus ( \cos\left(\frac{11\pi}{2}\right) ).

Well, what is ( \cos(6\pi) ) going to be? Well, cosine of any multiple of ( 2\pi ) is going to be equal to ( 1 ). You could view ( 6\pi ) as going around the unit circle ( 3 ) times, so this is the same thing as ( \cos(2\pi) ) or the same thing as ( \cos(0) ), so that is going to be equal to ( 1 ).

If that seems unfamiliar to you, I encourage you to review the unit circle definition of cosine. And what is ( \cos\left(\frac{11\pi}{2}\right) )? Let's see, let's subtract some multiple of ( 2\pi ) here to put it in values that we can understand better.

So this is—let me write it here—( \cos\left(\frac{11\pi}{2}\right) ) that is the same thing as; let's see if we were to subtract this; this is the same thing as ( \frac{11\pi}{2} - 5\frac{\pi}{2} ) right? Yeah. So this is—so we could view this as we could subtract ( 4\pi ) which is going to be; we could write that as ( \frac{8\pi}{2} ). In fact, no, let's subtract ( 4\pi ), which is ( \frac{8\pi}{2} ).

So once again, I'm just subtracting a multiple of ( 2\pi ), which isn't going to change the value of cosine, and so this is going to be equal to ( \cos\left(\frac{3\pi}{2}\right) ).

And if we imagine the unit circle, let me draw the unit circle here; so it's my ( y )-axis, my ( x )-axis, and then I have the unit circle. So, whoops, all right, the unit circle just like that. So if we start at—this is ( 0 ), then you go to ( \frac{\pi}{2} ), then you go to ( \pi ), then you go to ( \frac{3\pi}{2} ). So that's this point on the unit circle, so the cosine is the ( x )-coordinate. So this is going to be zero. This is zero.

So we get ( 1 - 0 ), so everything in the brackets evaluates out to ( 1 ). And so we are left with, so let me do that; so all of this is equal to ( 1 ). And so you have negative ( 9 ) times ( 1 ), which of course is just negative ( 9 ), is what this definite integral evaluates to.

More Articles

View All
10 Things I Wish I Knew Before Investing
Hey guys, welcome back to the channel. In this video, I’m going to be going through 10 things I wish I knew before I started investing, so hopefully we can get through these 10 in around about 10 minutes. So, time is on, let’s get stuck into it. The firs…
Managing the New York City Power Grid | Breakthrough
I never thought that something as simple as like an LED light bulb could make such a big impact. There was one project that I worked on where the team that I was working with thought, “Well, what about if we just screwed a bunch of LED light bulbs all thr…
Khan Academy’s 100&Change proposal: World-class diplomas for anyone, anywhere
Hi, I’m Sal Khan, founder of the Khan Academy. We’re a not-for-profit with a mission of providing a free, world-class education for anyone, anywhere. There are tens of millions of people learning on Khan Academy who want to prove what they know, who want…
Senate confirmation as a check on the judicial branch | US government and civics | Khan Academy
When we think about how the executive or the legislative branch have some form of check or power over the judicial branch, a key element of that is the executive’s ability to appoint judges to federal courts, including the U.S. Supreme Court. But it’s not…
How to use italics and underlines | Punctuation | Khan Academy
Hello, grammarians! Hello, Paige! Hi, David! So, Paige, have you ever heard of this man Aldus Minucius? I don’t think I have. That’s a pretty cool name, though. His given name was actually Aldo Manuzio. He was a Venetian printer around 1500, and this gu…
Why Silence is Power | Priceless Benefits of Being Silent
“All profound things and emotion of things are proceeded and attended by silence.” Herman Melville. In Western cultures, silence is commonly used as a means to show respect and recollect. One example prominent in Dutch culture is the Silent March; a ritu…