yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Covalent network solids | Intermolecular forces and properties | AP Chemistry | Khan Academy


3m read
·Nov 10, 2024

So we've already talked about multiple types of solids. We've talked about ionic solids, that's formed when you have ions that are attracted to each other, and they form these lattice structures.

We have seen metallic solids, and we've seen thought about them as these positive ions in this sea of negatively charged electrons. We've also seen molecular solids, which is formed from individual molecules being attracted to each other through intermolecular forces.

Now, what's different about covalent network solids is that there are entire networks formed by covalent bonds. What we see here, for example, is a network of silicons and carbons, and this is silicon carbide right over here.

Now, some of you might think, "Haven't we already seen covalent bonds involved in a solid before?" For example, in molecular solids, and this right over here is an example of a molecular solid that we studied in that video. You have the molecules, which are made up of atoms bonded with covalent bonds, but the reason why they form a solid is because the molecules are attracted to each other through intermolecular forces.

And if you wanted to melt this molecular solid, you have to essentially overcome these intermolecular forces. Well, in a covalent network solid, the solid to a large degree is made up of these covalent bonds, and if you wanted to melt this somehow, you would have to overcome these covalent bonds, which generally speaking are stronger than these intermolecular forces.

And so you can imagine covalent network solids are going to have higher melting points. You also don't see a sea of electrons here, so unlike metallic solids, they're not going to be good conductors of electricity.

But just to understand this point a little bit more clearly, let's look at some more covalent network solids. So, what you see here on the left, you might recognize as a diamond. A diamond is just a bunch of carbons covalently bonded to each other, and this is the structure of how these carbons are bonded.

And as you might already know, diamonds are the hardest solid that we know of. These covalent bonds, the way that they are structured can take a lot of stress, a lot of pushing and pulling; it's very hard to break it.

Now, what's interesting is that same carbon can form different types of covalent network solids. For example, this right over here is graphite, and graphite is probably something you're quite familiar with. When you write with a pencil, you're essentially scraping graphite onto that piece of paper.

And so, this is what graphite looks like; it's these covalent network sheets. Each of these sheets actually are attracted to each other through intermolecular forces, and that's why it's easy to scrape it, because these sheets can slide past each other.

But if you really wanted to melt graphite, you would have to break these covalent bonds. And so, you can imagine to overcome the covalent bonds and melt, say, diamond or graphite, it takes a very, very high temperature.

Graphite, for example, sublimes at 36 degrees Celsius. The silicon carbide that we looked at at the beginning of this video decomposes at 2830 degrees Celsius.

This right over here is a picture of quartz, which is a very common form of silicon dioxide, another covalent network solid, and this has a melting point of 1722 degrees Celsius.

So, the big takeaway over the last several videos is that there are many different ways of forming a solid. It could be with ions, it could be with metals, it could be with molecules that are attracted to each other with intermolecular forces, or you could have a network of atoms formed with covalent bonds.

More Articles

View All
Alan Watts and the Illusion of Time
When I started this YouTube channel, I became fixated on the day it would succeed. I stopped going out with friends and spent almost every waking moment working towards and dreaming about the future. When I did manage to go out with friends, I spent all m…
Enthalpy and phase changes | Thermodynamics | AP Chemistry | Khan Academy
[Instructor] Let’s say that we have some solid water or ice, and we want to melt the ice and turn the solid water into liquid water. This phase change of solid water to liquid water is called melting, and it takes positive 6.01 kilojoules per one mole to …
if-elif-else | Intro to CS - Python | Khan Academy
We can use an if statement to control that a particular block of code only executes when the condition evaluates to true. But what if we want to do something else only when the condition evaluates to false? Well, we can add another if statement and try an…
Solving equations by graphing: word problems | Algebra 2 | Khan Academy
We’re told to study the growth of bacteria. A scientist measures the area in square millimeters occupied by a sample population. The growth of the population can be modeled by ( f(t) = 24 \times e^{0.4t} ) where ( t ) is the number of hours since the expe…
Gordon Tries Fermented Fish | Gordon Ramsay: Uncharted
I’ve still got lots to learn, so I’m off to try a traditional Christmas dish that I hear tastes much better than it smells. Now trust me, I want to get the best of Christopher, and I’m up here to meet two guys who make this amazing delicacy that can only …
15 Life Changing Books Everyone Must Read
People read books for different reasons. Some do it for entertainment, others to kill time, and many others because they seek to improve their lives. A good book is meant to teach us something new about the world and to bring a unique perspective into our…