yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Covalent network solids | Intermolecular forces and properties | AP Chemistry | Khan Academy


3m read
·Nov 10, 2024

So we've already talked about multiple types of solids. We've talked about ionic solids, that's formed when you have ions that are attracted to each other, and they form these lattice structures.

We have seen metallic solids, and we've seen thought about them as these positive ions in this sea of negatively charged electrons. We've also seen molecular solids, which is formed from individual molecules being attracted to each other through intermolecular forces.

Now, what's different about covalent network solids is that there are entire networks formed by covalent bonds. What we see here, for example, is a network of silicons and carbons, and this is silicon carbide right over here.

Now, some of you might think, "Haven't we already seen covalent bonds involved in a solid before?" For example, in molecular solids, and this right over here is an example of a molecular solid that we studied in that video. You have the molecules, which are made up of atoms bonded with covalent bonds, but the reason why they form a solid is because the molecules are attracted to each other through intermolecular forces.

And if you wanted to melt this molecular solid, you have to essentially overcome these intermolecular forces. Well, in a covalent network solid, the solid to a large degree is made up of these covalent bonds, and if you wanted to melt this somehow, you would have to overcome these covalent bonds, which generally speaking are stronger than these intermolecular forces.

And so you can imagine covalent network solids are going to have higher melting points. You also don't see a sea of electrons here, so unlike metallic solids, they're not going to be good conductors of electricity.

But just to understand this point a little bit more clearly, let's look at some more covalent network solids. So, what you see here on the left, you might recognize as a diamond. A diamond is just a bunch of carbons covalently bonded to each other, and this is the structure of how these carbons are bonded.

And as you might already know, diamonds are the hardest solid that we know of. These covalent bonds, the way that they are structured can take a lot of stress, a lot of pushing and pulling; it's very hard to break it.

Now, what's interesting is that same carbon can form different types of covalent network solids. For example, this right over here is graphite, and graphite is probably something you're quite familiar with. When you write with a pencil, you're essentially scraping graphite onto that piece of paper.

And so, this is what graphite looks like; it's these covalent network sheets. Each of these sheets actually are attracted to each other through intermolecular forces, and that's why it's easy to scrape it, because these sheets can slide past each other.

But if you really wanted to melt graphite, you would have to break these covalent bonds. And so, you can imagine to overcome the covalent bonds and melt, say, diamond or graphite, it takes a very, very high temperature.

Graphite, for example, sublimes at 36 degrees Celsius. The silicon carbide that we looked at at the beginning of this video decomposes at 2830 degrees Celsius.

This right over here is a picture of quartz, which is a very common form of silicon dioxide, another covalent network solid, and this has a melting point of 1722 degrees Celsius.

So, the big takeaway over the last several videos is that there are many different ways of forming a solid. It could be with ions, it could be with metals, it could be with molecules that are attracted to each other with intermolecular forces, or you could have a network of atoms formed with covalent bonds.

More Articles

View All
Fermat's Library Cofounders João Batalha and Luís Batalha
You guys are brothers, right? Yeah, yeah. Okay, he’s the older one. I’m two years younger. Okay, and what made you want to start for Matt’s library? Oh, so just for the people that don’t know what it is, Vermont is a platform for annotating papers. If…
What Happens AFTER Nuclear War?
Nuclear war would forever split human history. Into anything that happened before and the post-war apocalypse. In the worst case, mass fires consume everything within tens of thousands of square kilometers, killing hundreds of millions within hours. But t…
The BEST Cryptocurrency To Buy In 2022 #shorts
So I’m sure you’re soon about to see a multitude of creators all share their thoughts on the top 10 cryptocurrencies to buy in 2022. So that got me thinking: there has to be data that exists to find out the best cryptocurrencies to invest in based on the…
Human Body 101 | National Geographic
The human body is a complex network of cells, tissues, and organs that together make life possible. Ten major systems are responsible for the body’s functions: skeletal, muscular, cardiovascular, nervous, endocrine, lymphatic, respiratory, digestive, urin…
How AirBnb will Crash the Housing Market
Here’s how Airbnb could crash the U.S. housing market. There are over 1 million properties listed on Airbnb here in the United States. In recent years, there’s been a huge trend of small investors buying single-family houses to then list on short-term re…
Infiltrating the Illegal Wildlife Trade: The Human Cost | Nat Geo Live
In East Africa, ivory trafficking is probably what you might guess. It’s organized crime, it’s poachers on the ground, corrupt governments. Central Africa; completely different. It’s a war zone. These are the rangers. These six men are dead. They were on…