yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Covalent network solids | Intermolecular forces and properties | AP Chemistry | Khan Academy


3m read
·Nov 10, 2024

So we've already talked about multiple types of solids. We've talked about ionic solids, that's formed when you have ions that are attracted to each other, and they form these lattice structures.

We have seen metallic solids, and we've seen thought about them as these positive ions in this sea of negatively charged electrons. We've also seen molecular solids, which is formed from individual molecules being attracted to each other through intermolecular forces.

Now, what's different about covalent network solids is that there are entire networks formed by covalent bonds. What we see here, for example, is a network of silicons and carbons, and this is silicon carbide right over here.

Now, some of you might think, "Haven't we already seen covalent bonds involved in a solid before?" For example, in molecular solids, and this right over here is an example of a molecular solid that we studied in that video. You have the molecules, which are made up of atoms bonded with covalent bonds, but the reason why they form a solid is because the molecules are attracted to each other through intermolecular forces.

And if you wanted to melt this molecular solid, you have to essentially overcome these intermolecular forces. Well, in a covalent network solid, the solid to a large degree is made up of these covalent bonds, and if you wanted to melt this somehow, you would have to overcome these covalent bonds, which generally speaking are stronger than these intermolecular forces.

And so you can imagine covalent network solids are going to have higher melting points. You also don't see a sea of electrons here, so unlike metallic solids, they're not going to be good conductors of electricity.

But just to understand this point a little bit more clearly, let's look at some more covalent network solids. So, what you see here on the left, you might recognize as a diamond. A diamond is just a bunch of carbons covalently bonded to each other, and this is the structure of how these carbons are bonded.

And as you might already know, diamonds are the hardest solid that we know of. These covalent bonds, the way that they are structured can take a lot of stress, a lot of pushing and pulling; it's very hard to break it.

Now, what's interesting is that same carbon can form different types of covalent network solids. For example, this right over here is graphite, and graphite is probably something you're quite familiar with. When you write with a pencil, you're essentially scraping graphite onto that piece of paper.

And so, this is what graphite looks like; it's these covalent network sheets. Each of these sheets actually are attracted to each other through intermolecular forces, and that's why it's easy to scrape it, because these sheets can slide past each other.

But if you really wanted to melt graphite, you would have to break these covalent bonds. And so, you can imagine to overcome the covalent bonds and melt, say, diamond or graphite, it takes a very, very high temperature.

Graphite, for example, sublimes at 36 degrees Celsius. The silicon carbide that we looked at at the beginning of this video decomposes at 2830 degrees Celsius.

This right over here is a picture of quartz, which is a very common form of silicon dioxide, another covalent network solid, and this has a melting point of 1722 degrees Celsius.

So, the big takeaway over the last several videos is that there are many different ways of forming a solid. It could be with ions, it could be with metals, it could be with molecules that are attracted to each other with intermolecular forces, or you could have a network of atoms formed with covalent bonds.

More Articles

View All
Simplifying numerical expressions | Algebraic reasoning | Grade 5 (TX TEKS) | Khan Academy
All right, what we’re going to do in this video is get a little bit of practice evaluating expressions that look a little bit complicated. So, why don’t you pause the video and see how you would evaluate this expression on the left and this expression on …
TALKING BACKWARDS (Backwards Banter Brain Testing) - Smarter Every Day 168
Hey, it’s me, Destin. Welcome back to Smarter Every Day. A while back on the Smarter Every Day subreddit, someone made a post that said something like “no one ever believes that I can talk backwards.” This caught my eye, and I watched the video, and it wa…
This Guy Is Making Furniture and Buildings out of Your Trash | Nat Geo Live
[Arthur] I hate plastic. That’s why we’ve engulfed on a 15 year mission to turn that into something that we actually want. We have collected around 750 new materials that’s coming from our daily post-consumer waste. It can go into any consumer product a…
Conditions for valid t intervals | Confidence intervals | AP Statistics | Khan Academy
Flavio wanted to estimate the mean age of the faculty members at her large university. She took an SRS, or simple random sample, of 20 of the approximately 700 faculty members, and each faculty member in the sample provided Flavio with their age. The data…
Battle Over Bathrooms | Gender Revolution With Katie Couric (Bonus Scene)
NARRATOR: There’s a new battleground in this gender revolution—bathrooms. And nowhere is that battle more heated than in public schools. Now, even the Supreme Court is set to weigh in on the case of Gavin Grimm, a transgender student in Virginia, who’s fi…
Stop Wanting, Start Accepting | The Philosophy of Marcus Aurelius
Although he never considered himself a philosopher, Marcus Aurelius’ writings have become one of the most significant ancient Stoic scriptures. His ‘Meditations’ contain a series of notes to himself based on Stoic ideas, one of which is embracing fate and…