yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Why are cockroaches so hard to kill? - Ameya Gondhalekar


3m read
·Nov 8, 2024

In the Egyptian Book of the Dead, there’s a banishment spell that declares, “Be far from me, O vile cockroach.” More than 3,000 years later, we’re still trying to oust these insects. But from poison traps to hastily brandished slippers, cockroaches seem to weather just about everything we throw at them. So what makes cockroaches so hard to kill?

There are nearly 5,000 cockroach species. 99% of them live in a range of habitats where they play important ecological roles by recycling dead or decaying organic matter and nourishing other animals. But a couple dozen species adapted to live in close association with humans. German and American cockroaches are among the most common. And they owe their resilience to a combination of physical and chemical adaptations.

When it comes to old-fashioned removal methods, they're troublingly tenacious. An American cockroach’s sensory hairs or structures pick up subtle air currents and rapidly send signals to its central nervous system. The roach can then turn and sprint away within a few milliseconds. And it’s among the fastest invertebrates ever recorded, reaching speeds of up to 50 body lengths per second. This would be the human equivalent of running more than 300 kilometers per hour.

And finding a hiding place is no problem. With its flattened, flexible body, an American cockroach can squeeze into spaces less than a quarter of its height. Even if we do land a hit, it can withstand compressive forces of up to 900 times its own weight by distributing the impact along its body. And the cockroach’s toughness doesn’t end there. Cockroaches can eat a variety of organic matter, including hair, dead skin, adhesives, and paper.

This is made possible by an expansive set of digestive enzymes. Cockroaches are able to thrive even in nutrient-poor environments. Roaches often eat decaying foods that are low in nitrogen—an essential component of DNA and proteins. But they survive by storing nitrogen-containing wastes in their bodies and having a resident group of bacteria recycle the nitrogen into useful molecules for them.

Meanwhile, German cockroaches will eat their own poop, vomit, and dead or dying colony members without hesitation. An American cockroach will frolic in sewers, consuming excrement and toting microbes like Staphylococcus aureus and E. coli. But they’ll rarely suffer any consequences. This is because they’re equipped with genes that provide immunity against numerous pathogens. These genes are often duplicated many times over.

So when infected, the cockroach’s immune system efficiently unleashes many antimicrobial molecules. Cockroaches also have a slew of defenses against pesticides. When a non-resistant roach walks on a surface that’s been sprayed with a pyrethroid insecticide, for example, the results will likely be fatal. Once absorbed, the chemical binds to sodium channel proteins, which help propagate nerve impulses. The pyrethroid keeps the sodium channels open, so the nerves fire repeatedly. And soon, the cockroach dies.

But if a resistant roach is exposed to pyrethroids, it’ll be just fine. Genetic mutations have given them sodium channels that the pyrethroids can’t bind to. The cockroach also produces more detoxification enzymes, which render the pesticide harmless, and the cockroach simply excretes it as a waste. Because German cockroaches reproduce especially quickly, populations may evolve resistance to a new pesticide within months. So far, they're already resistant to 43 different chemicals.

But contrary to popular belief, cockroaches would probably not survive a nuclear apocalypse. Compared with other insects, cockroaches are only mildly tolerant to radiation. They would die near the sites of nuclear explosions and would still be severely compromised miles away. Moreover, disasters that threaten humanity also jeopardize the habitats and buffets we provide roaches.

Perhaps the only way to beat them is through our mutual destruction. Or maybe cockroaches would find even more surprising ways to thrive long after we’re gone.

More Articles

View All
Building a Marsbase is a Horrible Idea: Let’s do it!
From hostile deserts, to lonely islands and the highest mountains, wherever there is space to expand into, humans do so. So, it’s hardly surprising that we’re already making preparations to set foot on Mars and to create the first permanent colony outside…
Astronaut Mike Massimino Talks with Kids | One Strange Rock
So how do you go Ah ha! How do you think? What happened? You’re rubbing your head. Oh, no. Right here is just aching. It is? Yeah, I don’t know why. Is it the conversation? Like my brain is just so excited. Your brain is so excited? Yeah. I’ve ne…
Making inferences in literary texts | Reading | Khan Academy
Hello readers! I’m here in the legendary study of the famous fictional dog detective, Sherlock Bones, of 221B Barker Street. Mr. Bones, you’re here to teach me about using details from a text to make inferences, aren’t you? “Yes, my boy. It’s simplicity…
Coal Mining's Environmental Impact | From The Ashes
[explosion] MARY ANNE HITT: To me, as somebody who had grown up in the mountains and loved the mountains, the idea that a coal company had the right to blow up an entire mountain and wipe it off the map forever was just unconscionable. These places are n…
Amelia's Turkey Tail Tea | Live Free or Die: How to Homestead
Either these are turkey tail mushrooms. So, turkey tail is one of our favorites. They are easy to identify. Pick a piece and look on the underside; if the underside has pores in it, which are lots and lots of teeny tiny holes, then it’s turkey tail. The t…
Simplifying hairy exponent expressions
So let’s get some practice simplifying hairy expressions that have exponents in them. We have a hairy expression right over here, and I encourage you to pause the video and see if you can rewrite this in a simpler way. All right, let’s work through this …