yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Neil and Seth on the Science of Family Guy | StarTalk
Seth, I called you into my office. Yes, I got to talk to you. Want me to help you clean up? Clean up the office? At some point, I had to find you and talk to you about the science in Family Guy. Yeah, yeah, and I said to myself before I even met you, the…
Calculating confidence interval for difference of means | AP Statistics | Khan Academy
Kylie suspected that when people exercise longer, their body temperatures change. She randomly assigned people to exercise for 30 or 60 minutes, then measured their temperatures. The 18 people who exercised for 30 minutes had a mean temperature, so this i…
Watch: Decomposing Dolphin Brings New Life to Seafloor | Expedition Raw
This common dolphin that just happened to wash up on the beach where Noah gave me a call said, “Hey, instead of putting in the dumpster, would you like to use this for your project?” It was the perfect opportunity. We’re going to try to better understand …
Easy Photography Life Hack!
Okay, I just learned the greatest life hack. If you see something that you want to take a picture of, but you left your phone at home, don’t worry. Just do this: blindfold yourself for like 30 minutes, and then stare at what you want to take a picture of …
My first time having full control of a plane!
First time I had full control of the plane by myself, and the instructor wasn’t with me. I was like, “Holy!” I mean, what do I do now? I took off, and we’ve done it so many times, but it’s so different when the instructor’s sitting there next to you. It’s…
Translations: description to algebraic rule | Grade 8 (TX) | Khan Academy
We’re told Alicia translated quadrilateral PQRS four units to the left and three units up to create quadrilateral A’ B’ C’ D’. Write a rule to describe this transformation. So pause this video, have a go at it, and then we’ll do it together. All right, …