yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Visit the Okavango Delta in 360° | National Geographic
Believe it or not, you’re in the middle of the Kalahari Desert in a place that is home to some of the most diverse wildlife on the planet. Here, you can move among them. They watch you. They listen to you. And they can smell you. Welcome to the Okavango …
Lex Fridman s Donaldem Trumpem s automatickými titulky pro ty z vás, kterým se je nedaří aktivovat.
The following is a conversation with Donald Trump on this The Lex Freedman podcast. They get any smaller and smaller, they get smaller, right? I mean, people do respect you more when you have a big camera for some reason. No, it’s cool. And about 20 guys…
My Thoughts On Bitcoin
What’s up you guys? It’s Graham here. So I’m finally going to be talking about one of the most requested topics that I’ve gotten here in the channel in the last month by a lot. And that would be my thoughts on Bitcoin. After all, in the last year, it’s ra…
How I Bought This House For $0
I’m very proud to say that this property right here was free. It cost me zero dollars. I was able to buy an income-generating property here in Los Angeles for nothing, and I think it’s at this point that people are supposed to comment, “It’s free real est…
Embracing Death | Explorer
It’s interesting in our society, and you know how we do things. You know, we plan for so many life celebratory events. We plan for a wedding, we plan for a baby, we plan for a graduation from high school, from college. We plan for our career. But the one…
Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy
So we’ve got this infinite series here, and let’s see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we’re going to multiply by -3 again. So it looks like…