yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Stars 101 | National Geographic
[Narrator] Like fireflies on a still summer night, they gently dot and illuminate the infinite velveteen sky. Stars. Be they millions or billions of years old, are all born in nebuli, clouds of dust and mostly hydrogen gas. Within these stellar nurserie…
How I Choose Opportunities That Align With My Brand | Behind The Velvet Rope PT 2
The social media following and the celebrity makes my deal making better because I could deliver the company’s extraordinary reductions in customer acquisition costs. You can’t run around all day long worrying what people think about you. I don’t. You sho…
Power LED Lights + Injection. Complete Walkthrough
In this video I’m going to show you the three most common ways to power LED strips as well as how to inject power in your longer runs for the lights. In this tutorial, I’ll be using three identical sets of BTF Lighting WS2812B LED strips. Each strip is fi…
Terry Crews Skydives Over Iceland | Running Wild with Bear Grylls
Like a dream. Let’s get your chute up. I’m ready. Here we go. BEAR GRYLLS: Terry Crews and I just landed on a small airfield in the Icelandic mountains. Last night, he told me that skydiving was on his bucket list. Well, Terry, be careful what you wish f…
2013 Berkshire Hathaway Annual Meeting (Full Version)
Morning kind of all worn out. We’re going to, well first of all, I really want to thank Brad Underwood. He puts the movie together every year, does a terrific job. [Applause] Andy Hayward and Amy are responsible for the cartoon. They also produce a Secret…
Isolation - Mind Field (Ep 1)
[Music] Imagine being confined to a 10 by 10 foot room in complete isolation. No timekeeping devices, no phones, no books, nothing to write on, no windows. [Music] Psychologists say that fewer than three days in a room like this can lead to brain damage. …