yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Preparing for the Hunt | Live Free or Die
[Music] It’s the final week of deer hunting season and Frontiersman Colbert’s last chance to get big game before winter. It’s important to clean your weapon. I don’t have any gun oil with me, but I’ve got pig fat, and pig fat’s going to work just fine. …
Why Is This Field Full of Huge Presidents? | Short Film Showcase
[Music] [Applause] [Music] [Music] It was an outdoor walking park with descriptions of each president on sign boards. The park was spotless; very nice place for the family and stroll your little babies around in their strollers. Pretty neat. It wasn’t in…
Kevin O'Leary talks Mortgages and the Market
You’re listening to the Real Estate Talk Show with Simon Janini and Aaron McCoy on Talk Radio AM 640. Welcome back to the Real Estate Talk Show here on Talk Radio AM 640, your source for all things real estate. Now, it’s time for an interview with an exp…
Simplifying numerical expressions | Algebraic reasoning | Grade 5 (TX TEKS) | Khan Academy
All right, what we’re going to do in this video is get a little bit of practice evaluating expressions that look a little bit complicated. So, why don’t you pause the video and see how you would evaluate this expression on the left and this expression on …
Electricity in India | Before the Flood
About 30% of households in India are yet to have access to electricity. If you want to provide electricity to everybody, we have to ensure that our electricity is affordable. India has a vast reservoir of coal; we are probably the third or fourth largest …
HUGE changes coming to your Credit Score in 2019…
What’s up you guys, it’s Graham here. So, as you guys know, I like to variate the topics I have in this channel, from real estate investing to personal finance, all the way to passive income and what to do when you win the 1.6 billion dollar Mega Millions…