yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Turn Short-Term Games Into Long-Term Games
Do you want to talk about Pareto optimal? Pareto optimal is another concept from game theory, along with Pareto superior. Pareto superior means that something is better in some ways while being equal or better in the other way, so it’s not worse off in an…
Wildlife and the Wall | WILDxRED
We are going to build the wall. It will be a real war, a real war. Are you ready? Are you ready? This is the Rio Grande; that is Mexico; that is the United States; Texas; and that is Mother Nature’s wall. It’s pretty great. The Rio Grande starts at Colora…
Step inside the $20,000,000 Falcon 7X. 🛩
This is a $20 million plane, and this is Steve. He’s selling it. Should we go take a look inside? Let’s go. So, we are now inside the aircraft. Steve, could you please tell us a little bit more? Sure! Most of these airplanes have these first four forwar…
Howard Marks: 78 Years of Investing Wisdom in 60 Minutes (MUST WATCH)
How do you make money as an investor? The people who don’t know think the way you do it is by buying good assets, a good building, stock in a good company, or something like that. That is not the secret for success. The secret for success in investing is …
Adding 3-digit numbers (no regrouping) | 2nd grade | Khan Academy
[Voiceover] So I have two numbers here that I wanna add together. The first number is 327, and that means three hundreds. I have a three in the hundreds place. You see them right over here. You see the three hundreds, each of these big squares have a hund…
Analyzing problems involving definite integrals | AP Calculus AB | Khan Academy
The population of a town grows at a rate of ( r(t) = 300 e^{0.3t} ) people per year, where ( t ) is time in years. At time ( t = 2 ), the town’s population is 1200 people. What is the town’s population at ( t = 7 )? Which expression can we use to solve t…