yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Charlie Munger: These 3 Simple Mental Models Helped Me Become a Billionaire
Hey everyone! Today’s video is about Charlie Munger and the concept of mental models. Charlie Munger is one of my favorite investors to study. He’s vice chairman of Berkshire Hathaway, the conglomerate controlled by Warren Buffett. Buffett has described M…
2015 AP Calculus AB/BC 4cd | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Part C: Let y equals f of x be the particular solution to the differential equation, with the initial condition f of two is equal to three. Does f have a relative minimum, a relative maximum, or neither at x equals 2? Justify your answer. Well, to think …
Brave New Words - Bill Gates & Sal Khan
Hi everyone, it’s here from Khan Academy, and as some of you all know, I have released my second book, Brave New Words, about the future of AI, education, and work. It’s available wherever you might buy your books. But as part of the research for that boo…
Kevin O'Leary - Music, Style, Money - Harry Rosen
Hi, I’m Kevin O’Leary from Dragon’s Den and Shark Tank, and I’m wearing a crisp Tom Ford from Harry Rosen. Oh yeah, baby! Business is so disciplined and scientific; it’s black and white. Either you make money or you lose it. Music is chaos. You need both …
Ecosystem dynamics: Clark’s nutcrackers and the white bark pine | Khan Academy
What’s that? That sound, that call, sounds like something a crow would make but not quite. That’s actually the call of a really interesting bird called Clark’s nutcracker. These birds are cousins of the American crow, which you might see and hear around …
Warrior Watch: Protecting Kenya's Lions | Explorers in the Field
[Music] [Music] My father was Saawariya and they used to kill many, many, many Lancia. He used to tell me how dangerous Lancer. I used to hate Lance. [Music] When I was a young boy, I thought I would be growing up and killing Lance, but now we protect the…