yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
What Sperm Whales Can Teach Us About Humanity | National Geographic
I can remember my earliest memories of my parents taking me to the beaches in New England where we lived and just wondering about the mysteries that lie beneath. I think the ocean for me has always represented this place of great potential discovery. As I…
To the Moon and Not Back? | StarTalk
So if I don’t mean to get morbid on you, but if you had died on the moon, were we ready for that here in America, here on Earth? Every president has a speechwriter, a staff, and a staff writer. The president would of course prepare for the event if some d…
Alaskan Medicine - Deleted Scene | Life Below Zero
Picking some yarrow here. I’m going to make some salve for my hands, feet, and my dog’s feet. Dog’s feet get in the cold conditions that we run them in; they get kind of dry, and this helps to keep them supple and soft. It’s very important to be knowledge…
Play Stupid Games, Win Stupid Prizes
I think when you’re being authentic, you don’t really mind competition that much. Yeah, it pisses you off and inspires some fear and jealousy and all the other emotions that come along with it. But also, you don’t really mind because you’re more oriented …
Grizz Quiz: How Much Do You Know About Grizzly Bears? | Short Film Showcase
Maybe they’re your worst nightmare, or perhaps they bring a smile to your face. Grizzly bears are famous for triggering a whole range of different emotions, most of them passionate. You might have asked you a couple of questions. Let me start with this on…
Fourier coefficients for sine terms
Many videos ago we first looked at the idea of representing a periodic function as a set of weighted cosines and sines, as a sum, as the infinite sum of weighted cosines and sines. Then we did some work in order to get some basics in terms of some of the…