yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
The Upcoming Stock Market Collapse | Round 2
What’s up? Grandma’s guys here. So, as usual, the market makes absolutely no sense and continues proving time and time again that anything can happen. For example, even though the NASDAQ just narrowly avoided its worst January ever in history, when asked …
Voter turnout | Political participation | US government and civics | Khan Academy
What we’re going to talk about in this video is voter turnout, which is a way of thinking about how many of the people who could vote actually do vote. It’s often expressed as a number, as a percentage, where you have the number who vote over the number o…
Will future robots & AI take over? | How Sci-Fi Inspired Science
Let’s face it, one of the worst things about adulting is having to clean. If we can get out of it in any way, we’ll do it. And since machines are made to make our lives easier, it makes sense we want a machine made to clean. But in sci-fi, we want to go o…
Meet the World’s First All-Female Team Created to Combat Poaching | Short Film Showcase
The old-school conservationists laughed at us. They said, “It’s never gonna work.” I’m 25 years old and one of the Black Mambas. I’m looking at other Black Mambas and approaching the unit. They’re always very, very shy at the beginning, and then they get …
Kevin O'Leary REVEALS His MULTI-MILLION Dollar Watch COLLECTION!
Hi there! As always, this week’s episode of Ask Mr. Wonderful comes from questions. It’s a dialogue; it’s a two-way thing. What I’m trying to do is gather a lot of questions into areas where it’s the same question over and over again, so I’m answering as …
Marcus Aurelius - Stop Caring What People Think
In Meditations, Marcus Aurelius said, “Don’t waste the rest of your time here worrying about other people—unless it affects the common good. It will keep you from doing anything useful. You’ll be too preoccupied with what so-and-so is doing, and why, and …