yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Multivariable chain rule intuition
So, in the last video, I introduced this multi-variable chain rule, and here, I want to explain a loose intuition for why it’s true, why you would expect something like this to happen. The way you think about an expression like this, you have this multiv…
Ponzi: The Financial Idiot Who Scammed the World
There was a time when the financial world marveled at the genius of Charles Ponzi, the man who was in charge of one of the most successful business investments in America. He had millions of dollars at his disposal and crowds of people lining up literally…
15 Leadership Decisions That Can Make or Break Your Future
Are you a leader in your life? Leadership isn’t just about making bold moves in the boardroom. Okay, you might have a vision for your financial goals, your mental and physical health, your relationships, your education, and just your overall lifestyle. Bu…
5 Books That Launched My Income To Over $20,000/month
Hey guys! Welcome back to the channel. In this video, I’m going to be running through five books that I think everyone should read if you want to get better with money, get better with personal finance, and specifically get better with investing. So obvi…
Black Holes Explained – From Birth to Death
Black holes are one of the strangest things in existence. They don’t seem to make any sense at all. Where do they come from… and what happens if you fall into one? Stars are incredibly massive collections of mostly hydrogen atoms that collapsed from enor…
Is That My Real Hand? | Breakthrough
Well, there’s a lot of interest in the robotics community. How can we extend the human body, not only with advanced prosthetic limbs for amps, but maybe for exoskeletons? And then, of course, the question is at what point do these external devices become …