yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Shadow Work | Owning Your Dark Side (feat. Emerald)
We have not understood yet that the discovery of the unconscious means an enormous spiritual task, which must be accomplished if we wish to preserve our civilization. Carl Jung. Human civilization consists of countless traditions, codes of conduct, and s…
THE DOWNFALL OF CREDIT CARDS | HOW TO PREPARE
What’s up you guys? It’s Graham here. So as I’m sure many of you know by now, I am a huge proponent and believer in credit cards. I think they’re a great way to leverage your money, get purchase protection, get cash back, collect points, travel for free, …
Why Now is the Golden Age of Paleontology | Nat Geo Explores
(tribal drum music) - [Narrator] Dinosaurs are awesome. (dinosaur roaring) We all know it. When we figured out these guys were a thing, we wanted more, more fossils, more art, more, well, whatever this is. So we went out and found them. Fast forward to to…
while loops | Intro to CS - Python | Khan Academy
What if you want your program to repeat a block of code? You could copy and paste those lines of code. But what if you wanted to repeat it 100 times or a thousand times? Or maybe you don’t even know upfront how many times you need it to repeat. To solve t…
Generation Plastic | Plastic on the Ganges
[Music] Hey, [Music] but it has changed now. Everything has changed. [Music] We used to make everything, like our tools, plates, and cups out of natural materials, but now everything is plastic. [Music] All of this dirtiness is coming from the garbage. It…
The Challenges with Cancer Trials | Breakthrough
ANDRE CHOULIKA: We didn’t have any intention of injecting these type of vials to patient because we needed a lot of vials to be able to file our clinical trial application. And this was planned to be done with the University College London. NARRATOR: Bef…