yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Checking Out the New Digs! | The Boonies
[Music] Is there anything back there? Say, is there anything back there, Joe? “See something promising looking up here. This could be… could lead us to something good. Maybe not, I don’t know.” Below the grid, Joe Ray’s Bridge has allowed him to venture…
Quick and Easy Voting for Normal People
Hello Internet! You know I love me some voting videos. These, however, are mostly about how organizations can improve their elections. But normal people need better voting too. Say a group of you are trying to decide what to have for dinner. There are th…
How to Study Way More Effectively | The Feynman Technique
This video is sponsored by brilliant.org, a math and science problem-solving website that helps you think more like a scientist. In a 2007 graduation speech, Charlie Munger told an interesting, but fictional, story about two people: the great scientist Ma…
I'm starting over
Hey, how’s it going? How’s life been for you recently? I just went on vacation with my family to Salita, Mexico, and it was very fun. You got to see all the street vendors, you got to see all the Mexican people, and all the white people on vacation. It wa…
How to stop quarantine from ruining your life
When self-isolation first started, I was like, “You know what? This is gonna be a piece of cake! I work from home, I’m at home all the time, this should be a cakewalk.” [Applause] [Music] It was a lot harder than I thought it would be, especially at the b…
Writing a quadratic function from a graph | Algebra 1 (TX TEKS) | Khan Academy
We’re told here’s the graph of a quadratic function f. All right, write the equation that defines f in standard form. So pause this video, have a go at this before we do this together. All right, now let’s work on this together. So before we even get to …