yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
How To Invest In 2020 | My Concerns
What’s up guys? It’s Graham here. So let’s attempt to answer the age-old question—a question that’s been unanswered for thousands of years, a question that historians have been pondering since the beginning of time—and that would be: how to invest in 2020…
Calculating internal energy and work example | Chemistry | Khan Academy
In this video, we’re going to do an example problem where we calculate internal energy and also calculate pressure-volume work. So we know the external pressure is 1.01 * 10^5 Pascals, and our system is some balloon. Let’s say it’s a balloon of argon gas.…
Diver Discovers a Strange Vehicle in the Detroit River | Drain the Oceans
I’ve lived in this area my entire life. Right on the United States border. Just a half a mile across the river from Detroit. I’ve been a scuba diver and a diving instructor for over 25 years. I was a broke university student and it was the only place I co…
The Electric Brain
The nervous system is fundamentally electric. When we move our arm, it moves because a signal has been sent to the muscle that controls it, and that message is made of charged atoms moving in and out of nerve cells. It’s electricity. Now, because the brai…
Safari Live - Day 12 | National Geographic
[Music] Standing by. Good afternoon again, my name is James Hendry and on camera today we’ve got Mono. That’s his thumb, with the ring on a steel ring, very nice! Yeah, made of copper. Mmm, wonderful. Okay, so we’re coming to you live from the Masai Mara…
Hosain Rahman at Startup School SV 2014
Thank you for coming. I hope to do not much talking at all, and I’m going to just ask you because it’s sort of a strange thing you have this. I want you to sort of go through the chronology of the early days, yeah. Um, and talk about you really did have a…