yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
This Is Only Red
Happy New Year, Vsauce! Michael here. And in honor of 2013, let’s discuss 13 things. To begin, where to spend all that cash you picked up over the holidays? Now, plenty of websites sell cool stuff. United Nuclear sells Aerogel, radioactive isotopes, jet …
Seven Wonders of the New World | Cosmos: Possible Worlds
NEIL DEGRASSE TYSON: We all feel the weight of the shadows on our future. But in another time, every bit as ominous as our own, there were those who could see a way through the darkness to find a star to steer by. Carl Sagan wrote, “I was a child in a tim…
Inside Colorado's Weed Research Lab
[Music] By my money for security reasons, baggage unattended will be removed and destroyed. [Music] United Airlines flight 2120 one, Denver. [Music] Hi, I think you’re looking for me. Hello, Internet’s past gray here at a hotel in Denver, Colorado. Why? W…
Horizontal area between curves | Applications of definite integrals | AP Calculus AB | Khan Academy
So I have two curves graphed here, and we’re used to seeing things where Y is a function of X. But here we have X as a function of Y. In fact, we can write this top expression as being a function of Y, and this second one, just to make it different, we co…
The Real Reason Robots Shouldn’t Look Like Humans | Supercut
When people think about robots, they usually imagine something like a Boston Dynamics robot, metallic and humanoid. But the robots we’ll see in the future might not look like that at all. I mean, if humans are interacting with something on a daily basis, …
Why Warren Buffett is Keeping $144B out of the Stock Market
How many times on the channel have I regarded Warren Buffett as the best stock market investor to have ever lived? I’ve said that a lot, and he is. He took over Berkshire Hathaway in 1965, and since that time, his regime of acquisitions and investments ha…