yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Principles for Success: “Struggle Well” | Episode 8
Principles for Success: An Ultra Mini-Series Adventure in 30 Minutes and in Eight Episodes Episode 8: Struggle Well, so far I described how I learned to confront my own realities, my problems, my mistakes, and weaknesses, and how I surrounded myself wit…
Introduction to sustainability| Land and water use| AP Environmental science| Khan Academy
Let’s talk about sustainability. You’ve probably come across the word “sustainable” at some point in your life. If I decided to continue to talk for the rest of this video without taking a breath, you might tell me, “Mia, that’s just not sustainable.” In …
The source of life for the Okavango | National Geographic
The Okavango Delta is a biodiversity hotspot in the heart of one of Africa’s most important freshwater systems. Its pulse is maintained by a river structure that begins deep in the Angolan highlands, in an area locals call Lisima Iya Mwono, the source of …
Scientists stumble upon a 12-foot long male tiger shark | Sharks of the Bermuda Triangle
This one looks good. Oh boy! Then, after nearly an hour swimming like a tiger, it’s a tiger! There’s a bite—got a beautiful tiger shark! Oh my God! Dr. Austin Gallagher caught a tiger shark in the Bermuda Triangle, but it’s not Mabel; it’s a 12-foot long …
Multiplying by j is rotation
Okay, there’s one more feature of complex numbers that I want to share with you, and we’ll do that down here. So, our definition of j is j squared equals minus 1. Now, what I want to do is a sequence of multiplications by j. This is a really important pr…
Helicopter Physics Series - #3 Upside Down Flying With High Speed Video - Smarter Every Day 47
Hey, it’s me Destin. Welcome back to Smarter Every Day. So last week I described collective pitch control for a helicopter, I described cyclic pitch control for a helicopter, and I also described anti-torque pitch control. But this week we’re going to com…