yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Warren Buffett: What Most Investors Don't Understand About Risk
Can you please elaborate your views on risk? You clearly aren’t a fan of relying on statistical probabilities, and you highlight the need for 20 billion dollars in cash to feel comfortable. Why is that the magic number, and has it changed over time? Yeah…
Cheap FPV Goggles for the NEO - DJI N3
Check out these goggles! They are the DJI N3, and they are a cheaper version of DJI’s FPV goggles. So that you could fly with the DJI Neo or the DJI Avada 2 and not have to spend $500 for a set of goggles. These are priced at $229. In this video, what I …
Love, Lust & Stoicism
You might be wondering; how did the ancient Stoics view lust and love? Were they hopeless romantics or rather cold and distant? Were they pleasure seekers enjoying polyamory or did they value the duties of marriage? In this video, I will explore lust, lov…
Using the reaction quotient | Equilibrium | AP Chemistry | Khan Academy
The reaction quotient is symbolized by the capital letter Q, and it tells us whether a reaction is at equilibrium or not. If the reaction is not at equilibrium, it also allows us to predict which direction the net reaction will go to reach equilibrium. F…
Porcelain in the Wreckage | Drain the Oceans
I grew up here in Portland. As a child, we all loved Indiana Jones. But it was actually really in high school when I was able to take an anthropology class, and it really piqued my interest. And then in community college, I started taking archeology class…
How Hummingbirds Depend on Humans (In SlowMo) - Smarter Every Day 124
Hey, it’s me, Destin. Welcome back to Smarter Every Day. If you’re like me, when you think of hummingbirds, you think of cute little animals that go around drinking out of flowers, and everything is happy and beautiful, right? Well, it’s not. They’re actu…