yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
The Strange Physics Principle That Shapes Reality
This is a video about a single simple rule that underpins all of physics, every principle, from classical mechanics to electromagnetism, from quantum theory to general relativity, right down to the ultimate constituents of matter, the fundamental particle…
How the algorithm controls your life
One thing that I’m really starting to notice is that it’s becoming extremely difficult not to spend all of our time on social media, on the internet, and all of that during these times of isolation. As if it wasn’t already a huge problem. And it kind of m…
Corn Flour Fireball
[Applause] I’m about to make a corn starch Fireball. Check it! [Music] Out, that is awesome! But it’s not just about making a giant Fireball; this is about real science. What’s going to happen when I put this butane torch on this teaspoon of corn flour? …
Two Friends + 24 Hours = One Great Adventure in Croatia | Short Film Showcase
This is my friend Alistair Humphries. He’s an adventurer and writer, and in the summer, he invited me on a micro-adventure in Croatia. The idea was to fit in as much as we possibly could in 24 hours and to make a short film about it. So first, we made a …
How to Hang a Tightrope Wire | StarTalk
Everyone’s first question would be: how do you get a wire from one building to another? If the wire is strong enough to hold your weight—not that you’re heavy—but if it’s strong enough to hold your weight, you can’t. You’re not—you can’t just feed, okay. …
Example free response question from AP macroeconomics | AP Macroeconomics | Khan Academy
Video, I want to tackle an entire AP Macroeconomics free response exercise with you. Assume that the economy of Country X has an actual unemployment rate of seven percent, a natural rate of unemployment of five percent, and an inflation rate of three perc…