yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Manus AI replaces your AI tech stack? (Full Demo)
Everyone’s talking about Manis AI, the Chinese AI app that basically can take your thoughts, turn your ideas into fully automated businesses and products. Now I wanted to try this, but I didn’t have access, so I called my friend Min Choy, who came on the …
My Thoughts On The 2021 Stock Market Crash
What’s up you guys, it’s Graham here. So first of all, can you believe it? We only got about 40 days left so far in 2020, depending on when I post this. Which means I could finally start using 2021 in the titles of my videos! No, but in all seriousness, …
Drying Fruits and Vegetables | Live Free or Die: How to Homestead
[Music] What I want to do today is show you how I dry my fruit when I have extra. Then I’ll show you some other things that I also like to [Music] dry. So, the thinner you slice the apples, the faster they’re going to dry. If you don’t slice them thin en…
Do the ultra successful share similar characteristics?
It’s hard to say whether these ultra high net worth people, billionaires or corporate executive types, really have the same style. I think everybody has their own unique style. I think it’s part of the active negotiations; it’s just part of the game. It …
The Constitutional Convention | Period 3: 1754-1800 | AP US History | Khan Academy
In the United States today, we know our system of government so well that it hardly bears thinking about. We know that there’s a president who’s the head of the executive branch. There’s Congress, which is made up of the House of Representatives and the S…
The WALKING WATER Mystery (in SPACE and SLOW MOTION!) - Smarter Every Day 160
Hey, it’s me Destin and welcome back to Smarter Every Day! I have a problem. There is a specific water phenomenon that I see happening all around me, but I have no idea how it works. I’ve been trying to figure it out for years. In fact, I put a video on t…