yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Shaving Foam | Ingredients With George Zaidan (Episode 3)
[Applause] What’s in here? What’s it do? And can I make it from scratch? It’s a inside ingredients. First things first, these are not shaving cream; they’re actually shaving foam. Shaving cream is more like face cream, and that deserves its own episode a…
What Is The Magnus Force?
[Applause] So I’m back at the University of Sydney with Rod Cross. Hi Derek! And today we’re talking about the effects of air on projectiles. We normally neglect these effects when I’m teaching students about projectiles. I tell them, “Forget about the a…
What Actually Happens When You Are Sick?
There is this idea floating around that what doesn’t kill you makes you stronger. That surviving a disease leaves you better off. And it seems to make sense because we have all experienced this. When you go through hardship, often you come out more resili…
Salmon Snag | Life Below Zero
So we’re gonna set this net. We’re gonna catch ourselves a bunch of salmon. If we have different kinds of salmon that come here, we’re gonna make dog food, people food, and food for gifts and giving, and trading, and whatever else we feel like doing for t…
Inside the Illegal Ape Trade | Trafficked: Underworlds with Mariana van Zeller
I’m Mariana Vanel, as a journalist covering the underworld. I’ve seen almost everything that can be trafficked, but apes was a really sad and difficult story to report on. Wildlife trafficking is the fourth most lucrative crime in the world; we are talkin…
Five Firsts for Mars InSight
This Monday, November 26, around noon Pacific Time, NASA will attempt to land a spacecraft called InSight on Mars. While a lot of previous missions have looked for life, evidence of past life, water, liquid water, and so on, this is the first mission dedi…