yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
I Need Your Help!
That echo, that is a nasty echo. Anyway, um, hello! Welcome to New Money HQ. This is pretty exciting, isn’t it? Um, so as you can see, I am currently in quite an empty office space and, uh, well, this is one of the parts of, uh, the expansion of the chann…
Open primaries, closed primaries, and blanket primaries | US government and civics | Khan Academy
Let’s talk about primary elections, which are often known as primaries. One way to think about them is that they’re just preliminary elections used to get down to a fewer number of candidates. A very simple example would be, let’s say there is a congressi…
NASA Trailblazer: Katherine Johnson | National Geographic
I liked what I was doing. I liked working, but little did I think it would go this far. Katherine Johnson. Catherine G. Johnson. Catherine Johnson. [Applause] Liftoff! The clock has started. Mathematics is the basis of the whole thing. [Music] You graduat…
Inverting op-amp circuit
Now I come to another configuration for an op-amp and it’s partially drawn here. I’m going to talk about this as I draw the rest of this circuit in. So this is going to be made from a resistor configuration that looks like this. We’ll have a resistor on t…
Is Light a Particle or a Wave?
There is a video on YouTube which has Deutsch explain the famous quantum double slit experiment, which is about particle-wave duality. Is light a particle, or a wave? You pass it through a slit depending on whether there’s an observer and interference or …
Allopatric and sympatric speciation | Biology | Khan Academy
[Voiceover] In any discussion of biology or discussion of evolution, the idea of a species will come up over and over again. And we have a whole separate video on species. But the general idea, or the mainstream definition of a species, is a group of orga…