yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
8 Most Important Lessons from the 2023 Berkshire Hathaway Annual Meeting
The Berkshire Hathaway annual meeting is a must-watch event. Legendary investors Warren Buffett and Charlie Munger provide their insights and wisdom on a wide range of topics, ranging from the stock market to the economy and everything in between. The Q&a…
Describing rotation in 3d with a vector
How do you describe rotation in three dimensions? So, for example, I have here a globe, and it’s rotating in some way. There’s a certain direction that it’s rotating, a speed with which it’s rotating, and the question is how could you give me some numeric…
Peek Inside the Strange, Secret World of Bugs | Short Film Showcase
Once upon a time, all of Britain was covered in wild wood, a hunting ground for kings, an ancient home for many beasts. Few places remain where this landscape can now be found. In the New Forest, that world still exists. It is an old world full of life, …
Surviving a Pathet Lao Prison | No Man Left Behind
Unassisted, Vietnam cannot produce the military formations essential to it. News is just breaking: a United States plane has been shot down over [Music] La. When they caught me, I took everything [Music] away, but you’ve got something that they can’t get…
Graphing two variable inequality
So what I would like to do in this video is graph the inequality negative 14x minus 7y is less than 4. And like always, I encourage you to pause this video and see if you can graph it on your own before we work through it together. So the way that I like…
The common-ion effect | Equilibrium | AP Chemistry | Khan Academy
The presence of a common ion can affect a solubility equilibrium. For example, let’s say we have a saturated solution of lead(II) chloride. Lead(II) chloride is a white solid. So, here’s the white solid on the bottom of the beaker, and the solid is at equ…