yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Warren Buffett: How to Make Money During a Recession
So it seems like pretty much everyone is worried about the economy right now, and for good reason. Inflation is at a multi-generational high. The last time inflation was this high in the United States was in 1981, more than four decades ago. In order to g…
Methods for subracting 3 digit numbers
Hello! In this video, we’re going to think about techniques for subtracting three-digit numbers. So, let’s say we wanted to figure out what 357 minus 156 is. Pause this video and see if you can somehow figure this out. You don’t have to be able to, becaus…
Sea Turtles 101 | National Geographic
(Mellow music) - [Narrator] Sea turtles are ancient mariners. Present in all but Earth’s coldest oceans, these marine reptiles are well-adapted to a life on the move. (Dramatic music) Sea turtles have existed since the time of the dinosaurs. The earliest …
Shower Thoughts: Paradoxes That Will Change Your Life
As light travels through space, it behaves like a wave, but light is also made of tiny particles called photons. This is the paradox of wave-particles, and it has completely revolutionized modern physics. The universe is filled with intriguing paradoxes l…
Proving the SSS triangle congruence criterion using transformations | Geometry | Khan Academy
What we’re going to do in this video is see that if we have two different triangles where the corresponding sides have the same measure. So this orange side has the same length as this orange side. This blue side has the same length as this blue side. Thi…
How I Bought A Ford GT For $0
What’s up you guys, it’s Graham here. So, a year ago, Kevin O’Leary reviewed my investment portfolio and told me that I should diversify, and I took that advice to heart. So, I bought a 2005 Ford GT. Now I get it, I know what you’re thinking, but let’s r…