yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Variance of sum and difference of random variables | Random variables | AP Statistics | Khan Academy
So we’ve defined two random variables here. The first random variable, X, is the weight of the cereal in a random box of our favorite cereal, Matthews. We know a few other things about it. We know what the expected value of X is; it is equal to 16 ounces.…
Linking verbs | The parts of speech | Grammar | Khan Academy
Hello grammarians! Today we’re talking about verbs and bears. So, we had previously established at least one thing about the verb, and that was that it can show actions. Um, but today I’d like to introduce the idea that the verb can link ideas to one anot…
The Jacobian Determinant
In this video, I want to talk about something called the Jacobian determinant. It’s more or less just what it sounds like: it’s the determinant of the Jacobian matrix that I’ve been talking to you the last couple of videos about. Before we jump into it, …
The BENEFITS of IGNORING People | STOICISM
…this chaos. It provides us with tools to navigate through the noise and distractions, allowing us to reclaim our focus and purpose. By concentrating on our values and the aspects of life that resonate with our true selves, we cultivate a clarity that shi…
Adjective order | The parts of speech | Grammar | Khan Academy
So, Grom Marians, if you’re a native English speaker, the phrase “French old white house” might seem a little weird to you. If you’re not a native English speaker, it might not. This is something that I didn’t really know about before I started preparing …
Scaling functions introduction | Transformations of functions | Algebra 2 | Khan Academy
So this is a screenshot of Desmos. It’s an online graphing calculator. What we’re going to do is use it to understand how we can go about scaling functions, and I encourage you to go to Desmos and try it on your own, either during this video or after. Le…