yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Coffee Farmers Hopeful For Their Dying Crops | Short Film Showcase
Coffee is the second most traded commodity after oil. Socially and ecologically, it still represents a big chunk of Guatemala’s economy, Guatemala’s social networks, and biodiversity sustainability as well. Recent outbreaks of pests and infestations linke…
SMARTER EVERY DAY AND SPACE!!!! - 129
Hey, it’s me Destin, welcome back to Smarter Every Day. So of everything I’ve studied on Smarter Every Day, if you know anything about my educational background or my family history, you know that space is this holy topic. It’s something that must be appr…
Raven Intelligence | Logan the Raven Learns a New Trick | Magic of Disney's Animal Kingdom
In the land of Asia. Welcome to Feathered Friends and Flight. My name is Corey. And I’m Katie. All right, Logan, are you ready? Okay, here we go. You got this? Logan the raven gets ready for his big performance. He comes out, and it’s the opening of the…
How to Walk on Your Hands | Science of Stupid: Ridiculous Fails
To understand the science, we normally end up concentrating on the stupid, but every now and then, we get the chance to study at the feet, or in this case, the hands of a real expert. Meet Kevin from Switzerland. He’s going to try and set a Guinness Worl…
Tiny Bombs in your Blood - The Complement System
Every living being needs to fight off other living beings that want to feast on them. Every living being needs to fight off other living beings that want to feast on them. Every living being needs to fight off other living beings that want to feast on the…
Unicorn FARTS on Your LIPS ?? -- LÜT #23
A telephoto lens with the tripod for your iPhone and soap shaped like a piece of poop. It’s episode 23 of LÜT. Wake up in your warm Nintendo knee-high socks and put on your fancy superhero bow-tie, along with these sunglasses from Spencer’s with a neat ha…