yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Renewable Energy 101 | National Geographic
Around the world, renewable energy use is on the rise, and these alternative energy sources could hold the key to combating climate change. What is renewable energy? Renewable energy is generated from sources that naturally replenish themselves and never…
The Student's Guide To Becoming A Successful Startup Founder
Your job is to be an optimist. Your job is to believe amazing things about what you can do with your life and what you do in the world when you’re young. That’s the point. That’s the point. That’s why the world needs young people. [Music] This is Michae…
A day in the life - my 10,000 subscriber celebration
I just hit 10,000 subscribers on YouTube! I just hit 10,000 subscribers! Nobody cares! I’m going to go to Ralphs, I’m going to buy a cake, we’re going to celebrate tonight! Oh my God, this is crazy! What’s up you guys, it’s Graham here. So I get asked all…
Exposing Greed in the Water Business | Water & Power: A California Heist
[music playing] (SINGING) God’s gonna trouble the water. “Water and Power– A California Heist” is a feature-length documentary about the politics of water in California. California officials are putting mandatory restrictions on water use in place. MAR…
Safari Live - Day 214 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Hello, hello, and welcome to your live Safari experience that happens every day, twice a day, except for this morning, wher…
Race to Get on the Water | Wicked Tuna: Outer Banks
Yo, really? Oh boy, thanks for the info. Oh man, I don’t know if I wanted to get that phone call. What do you think, Reba? I just heard from another fishing pal of mine that the friends he got out today and they’re hooked up. We just traveled a long way t…