yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Proof: parallel lines have the same slope | High School Math | Khan Academy
What I want to do in this video is prove that parallel lines have the same slope. So let’s draw some parallel lines here. So that’s one line, and then let me draw another line that is parallel to that. I’m claiming that these are parallel lines. Now I’m …
A Napa Valley Nature Walk | National Geographic
Hi! I’m Ashley Kalina, and I’m here in beautiful Napa Valley to talk to you about National Get Outdoors Day. I’m here with National Geographic and our friends at Nature Valley. We’re here to experience the beautiful outdoors. Now, I’m not the expert here…
Michael Burry INCREASES His Bet On Inflation!
Well, we’ve already discussed a lot of what was in Michael Barry’s 13F filing this quarter. There was obviously the big bet against Kathy Wood’s ARK ETF. There was the dramatic increase in the Facebook call option position. There was a big increase in the…
What I learned from President Obama - Smarter Every Day 151
Hey, it’s me, Destin. Welcome back to Smarter Every Day! I just interviewed the President of the United States of America, which is really strange because I’m not a journalist, I’m not a politician. I’m a rocket engineer. Which means I’m going to come at …
Surviving the Storm - Behind the Scenes | Life Below Zero
We are here to document the lives of people living in Alaska. The harsh reality is the environment we’re up against. It makes it tough to do our job. Get out of there, working on Life Below Zero can be very dangerous. Guns here, cameras here, never know w…
THIS VIDEO WILL CHANGE YOUR LIFE COMPLETELY | STOICISM BY MARCUS AURELIUS
Marcus Aurelius is a historical figure who is regarded as a symbol of ultimate authority. Apart from his position, he distinguished himself by his rigorous moral code, adherence to values, and deep philosophical views. He turned down ostentatious feasts b…