yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Stoic Lessons People Learn Too Late in Life | You'll Not Regret Watching This Video
Have you ever wondered what lessons many people learn too late in life? Get ready, because in this video I’m going to reveal those lessons from stoicism, offering you powerful tools to face challenges and grow as an individual. Now, if you are new here, p…
Curvature of a helix, part 2
So where we left off, we were looking at this parametric function for a three-dimensional curve and what it draws. I showed you was a helix in three-dimensional space, and we’re trying to find its curvature. The way you think about that is you have a circ…
Halle Bailey Sits Down with Nat Geo Explorer Aliyah Griffith | National Geographic
[Music] Hey there! I’m Deborah Adams Simmons from National Geographic. Today I’m here at the Seas with Nemo and Friends in Epcot, and I’m thrilled to be hanging out with National Geographic Explorer and marine scientist Aaliyah Griffith and Miss Hallie Ba…
Quick and Easy Voting for Normal People
Hello Internet! You know I love me some voting videos. These, however, are mostly about how organizations can improve their elections. But normal people need better voting too. Say a group of you are trying to decide what to have for dinner. There are th…
How Confidence Is Holding You Back
Hello Alexa, welcome back. Let’s be real here for a moment. Everything that is worth doing and everything that is worth getting needs a healthy dose of something that today’s society doesn’t really have anymore. And that thing is courage. The courage to …
Exploding Weed Seeds (28,546 fps Slow Motion)- Smarter Every Day 257
A portion of this video is sponsored by Google. More on that later. Here on Smarter Every Day, I like to explore things, and I like to figure them out for myself. And there’s one thing that you can do with the internet that’s really cool: you can just go …