yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
What you MUST know about Acorns Investing
What’s the guy’s histogram here? So, okay everybody, I’m listening. You guys have been asking me non-stop to make a video about Acorns investing, and I’ve been ignoring it for quite a long time until today. So here it is! We’re gonna be talking about Acor…
Where Do GREAT Ideas Come From
Where do great ideas come from? And why do some people have bigger, better ideas than others? When we look at some of the most creative people who have ever lived, something jumps out at us. We can look at David Lynch, who wrote and directed Twin Peaks, M…
Designing the Costumes | Saints & Strangers
[Music] It’s always fun sitting on sets, watching everybody in costumes. CU of course, it’s the nearest thing to time travel you can kind of get, you know? Everyone disappears if the crews are in a certain way. You just look around, you see these people, …
Nested conditionals | Intro to CS - Python | Khan Academy
What happens if you indent a conditional inside another conditional? To trace how the computer executes a program with nested conditionals, we need to look at the indentation. We know that an if starts a new conditional, so that means we have two conditio…
Secant lines & average rate of change | Derivatives introduction | AP Calculus AB | Khan Academy
So right over here, we have the graph of ( y ) is equal to ( x^2 ) or at least part of the graph of ( y ) is equal to ( x^2 ). The first thing I’d like to tackle is to think about the average rate of change of ( Y ) with respect to ( X ) over the interval…
Place value when multiplying and dividing by 10 | Math | 4th grade | Khan Academy
What is 700s * 10? Well, let’s focus first on this times 10 part of our expression. Because multiplying by 10 has some patterns in math that we can use to help us solve. One pattern we can think of when we multiply by 10 is if we take a whole number and…