yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Signs of sums on a number line | Integers: Addition and subtraction | 7th grade | Khan Academy
Let’s give ourselves some intuition and then some practice adding negative numbers. So, let’s start with negative 11 plus negative 3. So, first we can visualize what negative 11 looks like on a number line. Like this, I intentionally have not marked off …
Warren Buffett: How to Make Money During the 2023 Recession
So if you’re worried about the economy right now, you’re in pretty good company. According to a study done by CNBC, a whopping 81% of Americans are worried that a recession will be hitting the U.S. this year. You can add billionaire investor Warren Buffet…
Safari Live - Day 284 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Hello, hello! Jambo, jambo, and a very good afternoon from the Masai Mara Triangle in Kenya! Welcome to our drive of what w…
How to Invest in the 2020 Stock Market Bubble...
Hey guys, welcome back to the channel! In this video, we’re going to be talking about how we as investors should be approaching the topic of investing right now. Man, 2020 has been a whirlwind year, not just in general but also in the stock market. Someho…
A Man of the World | Podcast | Overheard at National Geographic
Tell me about how did you come to dive under the North Pole. One day I’m sitting in my office so long about four o’clock, I’m bored, and the phone rings. In 1979, Gil Grosvenor was the editor of National Geographic magazine. In that job, you don’t stay bo…
Games and modularity | Intro to CS - Python | Khan Academy
So you want to build a game, but how would you even get started? Most games we play have thousands of lines of code; some even have millions. Try and imagine a program with thousands of lines of code all in a single file. Sounds like a nightmare to naviga…