yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Mars 101 | National Geographic
[Music] The Babylonians called it Nargal; the Hindus called it Mongala; the Egyptians called it Harder or the Red One. Today, we know it as the Red Planet. For centuries, Mars has aroused our imaginations. The world’s best scientists and people everywhere…
LC natural response derivation 1
In this video, we’re going to begin the derivation of the LC natural response, the response of an inductor capacitor circuit. This is a difficult derivation, but it really pays off in the end. There’s a real fun surprise at the end, and that is this is wh…
The Most-Photographed Toilet In New Zealand
Come with me as I poop in New Zealand’s most photographed public toilet, located in Kawakawa, near the top of the North Island. The Hundertwasser toilets are the final and only Southern Hemisphere project from reclusive artist Friedensreich Hundertwasser.…
The fastest private jet deal I have done
One of my most memorable quickest deals was actually getting a phone call from somebody saying he wanted to buy a certain airplane. I told him that the airplane was really just ready to be under the contract. He said he wanted to buy something immediately…
Tornado Tree Mind Twister
Okay, smart man with your smart physics degree, let’s say your state gets ravaged by tornadoes. You go to the local EMA volunteer center; you volunteer. You and some buddies go out with chainsaws and try to do the best work you can to help people. Okay, …
Worked example: Analyzing the purity of a mixture | AP Chemistry | Khan Academy
We’re told you have a solid that you know is mostly sodium chloride. You suspect that it might have, or it may have, some sodium iodide, potassium chloride, or lithium chloride as well. When you analyze a sample, you see that it contains 73% chlorine by m…