yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Torque Basics | Simple harmonic motion and rotational motion | AP Physics 1 | Khan Academy
Imagine you’ve got a door here with a blue doorknob. Any one of these 10-newton forces will cause the door to rotate around the hinge, or the axis, or sometimes this is called the pivot point. Any one of these forces will cause the door to rotate. My que…
15 Life Lessons From the Richest Empires
Now, why would we want to learn anything from Empires that ruled a long time ago? They’ve fallen now, and if their goal was to last forever, well, they failed. They’re also controversial and highly criticized. So should we really look at the way they rule…
Does MONEY BUY Happiness? - The TRUTH About Money | Kevin O'Leary & Erik Conover
[Music] Everybody, welcome back to Ask Mr. Wonderful. Another fantastic episode about to happen! You know I love to collaborate with people, particularly those who travel all around the world, because all of our questions are global these days; we get th…
Moon 101 | National Geographic
[Narrator] Over 150 moons orbit the solar system’s planets. And one of those moons calls Earth home. The moon was formed about 4.5 billion years ago when, according to one theory, the Earth slammed into another early planet. Debris from this collision beg…
Tiny Fish Use Bacteria to Glow in the Dark | National Geographic
(Calming music) - I was in the Solomon Islands on a National Geographic expedition. We were working in a shallow reef, and we had a big blue light that we were filming fluorescent corals. One of the safety divers, Brendan Phillips, came up to me and just …
How To Make Friends
Friends make life good. They provide the scaffolding that makes it not just bearable, but fun. They give us a sense of meaning and purpose and are a source of security, self-esteem, and happiness. Almost nothing predicts how happy you will be as how conne…