yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Computing the partial derivative of a vector-valued function


2m read
·Nov 11, 2024

Hello everyone. It's what I'd like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions.

So the kind of thing I have in mind there will be a function with a multiple variable input. So this specific example has a two-variable input T and s. You could think of that as a two-dimensional space, as the input are just two separate numbers, and its output will be three-dimensional. The first component is T squared minus s squared. The Y component will be s times T, and that Z component will be T times s squared minus s times T squared minus s times T squared.

And the way that you compute a partial derivative of a guy like this is actually relatively straightforward. It's, if you were to just guess what it might mean, you’d probably guess right: it will look like the partial of V with respect to one of its input variables, and I'll choose T with respect to T. You just do it component-wise, which means you look at each component and you do the partial derivative to that because each component is just a normal scalar-valued function.

So you go up to the top one, and you say T squared looks like a variable as far as T is concerned, and its derivative is 2T. But s squared looks like a constant, so its derivative is zero. s times T, when s is s, looks like a constant, and when T looks like a variable, it has a derivative of s. Then T times s squared, when T is the variable and s is the constant, it just looks like that constant, which is s squared minus s times T squared.

So now, the derivative of T squared is 2T, and that constant s stays in. So that’s 2 times s times T, and that’s how you compute it probably relatively straightforward. The way you do it with respect to s is very similar. But where this gets fun and where this gets cool is how you interpret the partial derivative, right?

How you interpret this value that we just found, and what that means, depends a lot on how you actually visualize the function. So what I'll go ahead and do in the next video, and in the next few ones, is talk about visualizing this function. It'll be as a parametric surface in three-dimensional space; that's why I've got my graph or program out here. I think you'll find there's actually a very satisfying understanding of what this value means.

More Articles

View All
Engineering with Origami
Engineers are turning to origami for inspiration for all types of applications, from medical devices to space applications, and even stopping bullets. But why is it that this ancient art of paper folding is so useful for modern engineering? Origami, liter…
A Dry Valley Mystery | Continent 7: Antarctica
Scott Bay’s choppers will be here to pick up the team in 15 hours. It’s an early start this morning, and we’ve got to break the camp down, but not everyone is ready. Yes, I mean science in the Dry Valleys. He’s gone really well; we’ve knocked out pretty …
Impact of removing outliers on regression lines | AP Statistics | Khan Academy
The scatter plot below displays a set of bivariate data along with its least squares regression line. Consider removing the outlier at (95, 1). So, (95, 1) we’re talking about that outlier right over there and calculating a new least squares regression li…
2009 Berkshire Hathaway Annual Meeting (Full Version)
[Applause] Good morning! I’m Warren, the hyperkinetic fellow. Here is Charlie, and we’re going to go in just a minute to a question and answer section that, at least, a question session that will be a little different than last year. We have a panel, I ca…
5 Signs You're Dealing With An Evil Person | Stoicism
[Music] It’s a harsh reality, but some people in our lives take pleasure in causing harm and chaos. Think about it: you could be sharing moments and trusting someone only to discover they are the very source of your turmoil. Today, we dive deep into a to…
Introduction to proportional relationships | 7th grade | Khan Academy
In this video, we are going to talk about proportional relationships, and these are relationships between two variables where the ratio between the variables is equivalent. Now, if that sounds complex or a little bit fancy, it’ll hopefully seem a little b…