yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What the Genomic Revolution Means to You | Big Think


3m read
·Nov 4, 2024

So Moore's law is sort of the law of the computer industry that says compute power doubles every 24 months or so. And, you know, that's sort of put out there by experts, and technology development is sort of, you know, the prototype. That's the thing that you really shoot for with Moore's law, but nobody ever keeps up with Moore's law except the computer industry.

So saying we actually track and have been tracking really, you know, the past 15 years in terms of the cost for DNA sequencing. And trying our best to keep up with Moore's law, and actually we did keep up with Moore's law really quite effectively near the end of the genome project. Even in the number of years for four or five years after the genome project, using the old-fashioned method that we used to use for DNA sequencing, but we had sufficiently industrialized those methods that actually allowed us to keep up with Moore's law.

And then what happened? About 2007, our major groups switched over to these fancy new methods. They're called next generation DNA sequencing methods, and almost overnight — and has just continued to do it up to the present time — they outstripped Moore's law by far. And it's really been truly remarkable. The cost of DNA sequencing has plummeted tremendously so that that first human genome sequence that was completed ten years ago cost a billion dollars.

Now we can sequence a human genome today in a matter of a day or two, and it costs well under ten thousand dollars, really just a few thousand dollars. And if you follow the curves which we've been following, you can see particularly the last six years we have outpaced Moore's law by far. So among the many exciting developments in genomics really continues to be new technologies for sequencing DNA.

We've come a long way and have incredibly powerful methods today. There's new ones coming, and we continue to invest in the development of new technologies because we see the importance of it. There's a particular new methodology that's getting a lot of attention in the genomics community these days. It's called nanopore sequencing.

It really is with molecules that sit in lipid bilayers, and the strands of DNA sort of get pulled through it, and literally we're able to detect every single base on that DNA ladder one at a time as it gets pulled through the nanopores. It's just way cool. But what's particularly cool about it is that the technologies can be reduced to really small form, and one of the companies that's manufacturing it is releasing an instrument this year that basically looks like a USB device.

In fact, it is a USB device. It's a little bit bigger than a thumb drive. And literally it plugs into the USB port of a laptop computer, and I haven't seen it operate yet, but I'm told it can sequence a human genome in something like a day. We'll have to see when it's released how it really performs. But the notion, you know, and whether it's that company or whether it's this year or whether it's another company or it's another year — it's not science fiction to believe that we will have these little USB devices sitting in our laptop that can read out human genome sequences in the next year or two or three.

One of the things I think is particularly cool with this first company that's launching these USB devices is that the company tells me that the USB device that will sequence a human genome will work equally well in a PC or a Macintosh computer, which makes me think they've thought of everything.

More Articles

View All
Where Did Pablo Picasso's Genius Come From? | National Geographic
Where does genius come from? Pablo Picasso’s journey to genius began with a puff of his uncle Salvador’s cigar, so claims the man himself. It’s possible this puff ignited what some historians call the rage to master: a voracious dedication to push the bou…
Standard normal table for proportion between values | AP Statistics | Khan Academy
A set of laptop prices are normally distributed with a mean of 750 and a standard deviation of 60. What proportion of laptop prices are between 624 and 768 dollars? So let’s think about what they are asking. We have a normal distribution for the prices, …
Exploring the Ocean for Sixty Years | Best Job Ever
Even if you’ve never seen the ocean or touch the ocean, the ocean touches you with every breath you take, every trough of water you drink. It’s the ocean. It’s the ocean for me. Being a biologist, just following my heart has led me to some fascinating pl…
Transforming exponential graphs (example 2) | Mathematics III | High School Math | Khan Academy
We’re told the graph of y equals 2 to the x is shown below. So that’s the graph; it’s an exponential function. Which of the following is the graph of y is equal to negative 1 times 2 to the x plus 3 plus 4? They give us 4 choices down here, and before we …
Modeling with multiple variables: Pancakes | Modeling | Algebra || | Khan Academy
We are told that Jade is making pancakes using flour, eggs, and milk. This table gives the cost per kilogram of each ingredient and the amount in kilograms that Jade uses. All right, the total amount Jade spends on ingredients is six dollars. Write an eq…
8 Key Principles To OVERCOME Self-Doubt & Negative Thoughts | Stoicism Insights
Every single one of us at some point in our lives faces that sneaky, undermining whisper of self-doubt. It’s like a shadow that lingers just out of sight, waiting to cloud our decisions and dampen our spirits. But here’s the catch. The real battle isn’t a…