yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What the Genomic Revolution Means to You | Big Think


3m read
·Nov 4, 2024

So Moore's law is sort of the law of the computer industry that says compute power doubles every 24 months or so. And, you know, that's sort of put out there by experts, and technology development is sort of, you know, the prototype. That's the thing that you really shoot for with Moore's law, but nobody ever keeps up with Moore's law except the computer industry.

So saying we actually track and have been tracking really, you know, the past 15 years in terms of the cost for DNA sequencing. And trying our best to keep up with Moore's law, and actually we did keep up with Moore's law really quite effectively near the end of the genome project. Even in the number of years for four or five years after the genome project, using the old-fashioned method that we used to use for DNA sequencing, but we had sufficiently industrialized those methods that actually allowed us to keep up with Moore's law.

And then what happened? About 2007, our major groups switched over to these fancy new methods. They're called next generation DNA sequencing methods, and almost overnight — and has just continued to do it up to the present time — they outstripped Moore's law by far. And it's really been truly remarkable. The cost of DNA sequencing has plummeted tremendously so that that first human genome sequence that was completed ten years ago cost a billion dollars.

Now we can sequence a human genome today in a matter of a day or two, and it costs well under ten thousand dollars, really just a few thousand dollars. And if you follow the curves which we've been following, you can see particularly the last six years we have outpaced Moore's law by far. So among the many exciting developments in genomics really continues to be new technologies for sequencing DNA.

We've come a long way and have incredibly powerful methods today. There's new ones coming, and we continue to invest in the development of new technologies because we see the importance of it. There's a particular new methodology that's getting a lot of attention in the genomics community these days. It's called nanopore sequencing.

It really is with molecules that sit in lipid bilayers, and the strands of DNA sort of get pulled through it, and literally we're able to detect every single base on that DNA ladder one at a time as it gets pulled through the nanopores. It's just way cool. But what's particularly cool about it is that the technologies can be reduced to really small form, and one of the companies that's manufacturing it is releasing an instrument this year that basically looks like a USB device.

In fact, it is a USB device. It's a little bit bigger than a thumb drive. And literally it plugs into the USB port of a laptop computer, and I haven't seen it operate yet, but I'm told it can sequence a human genome in something like a day. We'll have to see when it's released how it really performs. But the notion, you know, and whether it's that company or whether it's this year or whether it's another company or it's another year — it's not science fiction to believe that we will have these little USB devices sitting in our laptop that can read out human genome sequences in the next year or two or three.

One of the things I think is particularly cool with this first company that's launching these USB devices is that the company tells me that the USB device that will sequence a human genome will work equally well in a PC or a Macintosh computer, which makes me think they've thought of everything.

More Articles

View All
Amor Fati | Stoic Exercises For Inner Peace
In one of my earlier videos, I have talked about amor fati. Amor fati means ‘love of fate’, and is a concept in Stoic philosophy but also in the works of Nietzsche. The idea is to love and embrace whatever the outcome is, no matter how hard we work toward…
Science Fiction or Real Mechanics? | StarTalk
We have a little quiz, a little game show. I want to know if this mechanical problem is a science fiction problem or a real-life, real mechanical problem? Bona fide mechanical problem. Real or not, is that right? Do we go bing or meh? Yes. So is it a rea…
Worked example: analyzing an ocean food web | Middle school biology | Khan Academy
So this diagram right over here describes a food web, and a food web models how energy and matter move in an ecosystem. We’re going to use this food web to answer some questions to make sure we understand food webs. So the first thing I’m going to ask yo…
Rounding whole numbers: missing digit | Math | 4th grade | Khan Academy
What digits could replace the question mark in the hundreds place to make this statement true? 4,000 question mark hundreds 29 rounds to 5,000 if we round to the nearest thousand. So we want a number whose nearest thousand is 5,000. It’s closer to 5,000 …
Foraging for Mushrooms in Olympic National Park | National Geographic
Nature, the most powerful creative force on Earth. I’m Chef Melissa King. Cooking has taken me to incredible places. Wow. (laughs) From TV competitions and celebrity galas to countries around the world. I’m heading out to places I’ve never been before to …
Negative definite integrals | Integration and accumulation of change | AP Calculus AB | Khan Academy
We’ve already thought about what a definite integral means. If I’m taking the definite integral from ( a ) to ( b ) of ( f(x) \, dx ), I can just view that as the area below my function ( f ). So, if this is my y-axis, this is my x-axis, and ( y ) is equ…