yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring quadratics with a common factor | Algebra 1 | Khan Academy


2m read
·Nov 10, 2024

Avril was trying to factor 6x squared minus 18x plus 12. She found that the greatest common factor of these terms was 6 and made an area model. What is the width of Avril's area model? So pause this video and see if you can figure that out, and then we'll work through this together.

All right, so there's a couple of ways to think about it. She's trying to factor 6x squared minus 18x plus 12, and she figured out that the greatest common factor was 6. So one way she could think about it is this could be rewritten as six times something else.

To help her think about it, she thought about an area model, where if you had a rectangle, if you had a rectangle like this, and if the height is 6 and the width, let's just call that the width for now. So this is the width right over here. If you multiply 6 times the width, and maybe I could write width right over here, if you multiply 6 times the width, you multiply the height times the width, you're going to get the area.

So imagine that the area of this rectangle was our original expression, 6x squared minus 18x plus 12. And that's exactly what's drawn here. Now, what's interesting is that they broke up the area into three sections. This pink section is the 6x squared, this blue section is the negative 18x, and this peak section is the 12.

Of course, these aren't drawn to scale because we don't even know how wide each of these are because we don't know what x is. So this is all a little bit abstract, but this is to show that we can break our bigger area into three smaller areas.

What's useful about this is we could think about the width of each of these sub-areas, and then we can add them together to figure out the total width. So what is the width of this pink section right over here? Well, 6 times what is 6x squared? Well, 6 times x squared is 6x squared, so the width here is x squared.

Now, what about this blue area? A height of 6 times what width is equal to negative 18x? So let's see, if I take 6 times negative 3, I get negative 18, but then I have to multiply it times an x as well to get negative 18x. So 6 times negative 3x is negative 18x.

And then last but not least, 6, our height of 6, times what is going to be equal to 12? Well, 6 times 2 is equal to 12. So we figured out the widths of each of these sub-regions, and now we know what the total width is.

The total width is going to be our x squared plus our negative 3x plus our two. So the width is going to be x squared, and I can just write that as minus 3x plus 2. So we have answered the question, and you could substitute that back in for this, and you could see if you multiplied 6 times all of this. If you distributed the 6, you would indeed get 6x squared minus 18x plus 12.

More Articles

View All
2035: The Point of No Return
[Music] In some of the most popular films, writers will often use a point of no return to force their main character into action. It’s a point in the story where the protagonist can’t return to their former life without going through trials that bring int…
Labor and Capital Are Old Leverage
So why don’t we talk a little bit about leverage? The first tweet in the storm was a famous quote from Archimedes, which was: “Give me a lever long enough and a place to stand, and I will move the earth.” The next tweet was: “Fortunes require leverage.” …
The 5 Things Successful People Do In Their 20’s
What’s up you guys? It’s Graham here. So your 20s are really such an important time. I honestly believe that it’s these early years that best form the foundation for everything else you do later in life. Much like it’s the easiest to learn a second langua…
Interpreting change in exponential models: changing units | High School Math | Khan Academy
The amount of carbon dioxide (CO2) in the atmosphere increases rapidly as we continue to rely on fossil fuels. The relationship between the elapsed time T in decades—let me highlight that because that’s not a typical unit—but in decades since CO2 levels w…
Snake vs. Roadrunner Face-off | National Geographic
[mysterious music] NARRATOR: The tongue of western diamondback rattlesnake cautiously tastes the air. She flicks airborne particles against the roof of her mouth to be analyzed, sorting out potential food from potential threat, like this other icon of th…
Are you here to please others? Well, I’m not.
Imagine waking up on an ordinary morning, only to discover that your reflection in the mirror has become alien, monstrous. Your limbs, once familiar, have morphed into spindly, insect-like protrusions, and a hard, shiny shell covers your flesh. In Franz …