yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring quadratics with a common factor | Algebra 1 | Khan Academy


2m read
·Nov 10, 2024

Avril was trying to factor 6x squared minus 18x plus 12. She found that the greatest common factor of these terms was 6 and made an area model. What is the width of Avril's area model? So pause this video and see if you can figure that out, and then we'll work through this together.

All right, so there's a couple of ways to think about it. She's trying to factor 6x squared minus 18x plus 12, and she figured out that the greatest common factor was 6. So one way she could think about it is this could be rewritten as six times something else.

To help her think about it, she thought about an area model, where if you had a rectangle, if you had a rectangle like this, and if the height is 6 and the width, let's just call that the width for now. So this is the width right over here. If you multiply 6 times the width, and maybe I could write width right over here, if you multiply 6 times the width, you multiply the height times the width, you're going to get the area.

So imagine that the area of this rectangle was our original expression, 6x squared minus 18x plus 12. And that's exactly what's drawn here. Now, what's interesting is that they broke up the area into three sections. This pink section is the 6x squared, this blue section is the negative 18x, and this peak section is the 12.

Of course, these aren't drawn to scale because we don't even know how wide each of these are because we don't know what x is. So this is all a little bit abstract, but this is to show that we can break our bigger area into three smaller areas.

What's useful about this is we could think about the width of each of these sub-areas, and then we can add them together to figure out the total width. So what is the width of this pink section right over here? Well, 6 times what is 6x squared? Well, 6 times x squared is 6x squared, so the width here is x squared.

Now, what about this blue area? A height of 6 times what width is equal to negative 18x? So let's see, if I take 6 times negative 3, I get negative 18, but then I have to multiply it times an x as well to get negative 18x. So 6 times negative 3x is negative 18x.

And then last but not least, 6, our height of 6, times what is going to be equal to 12? Well, 6 times 2 is equal to 12. So we figured out the widths of each of these sub-regions, and now we know what the total width is.

The total width is going to be our x squared plus our negative 3x plus our two. So the width is going to be x squared, and I can just write that as minus 3x plus 2. So we have answered the question, and you could substitute that back in for this, and you could see if you multiplied 6 times all of this. If you distributed the 6, you would indeed get 6x squared minus 18x plus 12.

More Articles

View All
AC analysis superposition
So in the last video, we talked about Oilers formula, and then we showed the expressions for how to extract a cosine and a sine from Oilers formula. We have a powerful set of expressions there for relating exponentials to sine waves. Now, I want to show …
The common-ion effect | Equilibrium | AP Chemistry | Khan Academy
The presence of a common ion can affect a solubility equilibrium. For example, let’s say we have a saturated solution of lead(II) chloride. Lead(II) chloride is a white solid. So, here’s the white solid on the bottom of the beaker, and the solid is at equ…
Why Is This Field Full of Huge Presidents? | Short Film Showcase
[Music] [Applause] [Music] [Music] It was an outdoor walking park with descriptions of each president on sign boards. The park was spotless; very nice place for the family and stroll your little babies around in their strollers. Pretty neat. It wasn’t in…
Worked examples: Definite integral properties 1 | AP Calculus AB | Khan Academy
We want to evaluate the definite integral from 3 to 3 of f of x dx. We’re given the graph of f of x and of y equals f of x, and the area between f of x and the x-axis over different intervals. Well, when you look at this, you actually don’t even have to …
Taking a step back (what happened)
Hey, so right off the bat I want to acknowledge that this is going to be a much different pace than my usual videos because I’m not scripting it out word for word. I’m not trying to find the perfect way to say every sentence. I’m not playing to the YouTub…
Don't Shoot a Blue Tongue Deer | The Boonies
You can see we’re on a deer trail. There’s probably one coming down this way. In Western Idaho, Bearclaw is on the hunt for white-tailed deer. He and his good friend Conan have decided to cover more ground. But over the past 4 hours, there are no signs o…