yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring quadratics with a common factor | Algebra 1 | Khan Academy


2m read
·Nov 10, 2024

Avril was trying to factor 6x squared minus 18x plus 12. She found that the greatest common factor of these terms was 6 and made an area model. What is the width of Avril's area model? So pause this video and see if you can figure that out, and then we'll work through this together.

All right, so there's a couple of ways to think about it. She's trying to factor 6x squared minus 18x plus 12, and she figured out that the greatest common factor was 6. So one way she could think about it is this could be rewritten as six times something else.

To help her think about it, she thought about an area model, where if you had a rectangle, if you had a rectangle like this, and if the height is 6 and the width, let's just call that the width for now. So this is the width right over here. If you multiply 6 times the width, and maybe I could write width right over here, if you multiply 6 times the width, you multiply the height times the width, you're going to get the area.

So imagine that the area of this rectangle was our original expression, 6x squared minus 18x plus 12. And that's exactly what's drawn here. Now, what's interesting is that they broke up the area into three sections. This pink section is the 6x squared, this blue section is the negative 18x, and this peak section is the 12.

Of course, these aren't drawn to scale because we don't even know how wide each of these are because we don't know what x is. So this is all a little bit abstract, but this is to show that we can break our bigger area into three smaller areas.

What's useful about this is we could think about the width of each of these sub-areas, and then we can add them together to figure out the total width. So what is the width of this pink section right over here? Well, 6 times what is 6x squared? Well, 6 times x squared is 6x squared, so the width here is x squared.

Now, what about this blue area? A height of 6 times what width is equal to negative 18x? So let's see, if I take 6 times negative 3, I get negative 18, but then I have to multiply it times an x as well to get negative 18x. So 6 times negative 3x is negative 18x.

And then last but not least, 6, our height of 6, times what is going to be equal to 12? Well, 6 times 2 is equal to 12. So we figured out the widths of each of these sub-regions, and now we know what the total width is.

The total width is going to be our x squared plus our negative 3x plus our two. So the width is going to be x squared, and I can just write that as minus 3x plus 2. So we have answered the question, and you could substitute that back in for this, and you could see if you multiplied 6 times all of this. If you distributed the 6, you would indeed get 6x squared minus 18x plus 12.

More Articles

View All
Reasoning with linear equations | Solving equations & inequalities | Algebra I | Khan Academy
In this video, we’re going to try to solve the equation (3 \cdot x + 1 - x = 9). And like always, I encourage you to pause this video and try to work through this on your own. But the emphasis of this video is to not just get to the right answer, but to r…
Homeroom with Sal & David Sinclair, PhD - Tuesday, July 14
Hi everyone! Welcome to our homeroom livestream. Very excited about the conversation we’re about to have. But I will start with my standard announcements, reminding everyone that we at Khan Academy we’re a 501c3. We’re a not-for-profit; we can only exist …
Example of under coverage introducing bias | Study design | AP Statistics | Khan Academy
A senator wanted to know about how people in her state felt about internet privacy issues. She conducted a poll by calling 100 people whose names were randomly sampled from the phone book. Note that mobile phones and unlisted numbers are not in phone book…
A Simulated Mars Tour | StarTalk
Hi Neil, welcome to Hi Seeds and Hawaii Space Exploration Animal Looking Simulation! I’m really excited to give you guys a tour, so come on, let’s go. This is the biology lab, and this is our astrobiologist Cyprian. So, most of the experiments we’re doin…
DON'T BE A GREEDY PIG!! Shark Tank Behind the Scenes | Kevin O'Leary
Oh, I just love the smell of a good royalty deal in the morning. [Off-Camera] Good morning Clay. Good morning Kevin. [Off-Camera] Hey, morning Ken. This is it. The Shark Tank set, right here. These tables, these chairs. Right here baby. This is where i…
Finishing the intro lagrange multiplier example
So, in the last two videos, we were talking about this constrained optimization problem where we want to maximize a certain function on a certain set: the set of all points ( x, y ) where ( x^2 + y^2 = 1 ). We ended up working out, through some nice geom…