yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring quadratics with a common factor | Algebra 1 | Khan Academy


2m read
·Nov 10, 2024

Avril was trying to factor 6x squared minus 18x plus 12. She found that the greatest common factor of these terms was 6 and made an area model. What is the width of Avril's area model? So pause this video and see if you can figure that out, and then we'll work through this together.

All right, so there's a couple of ways to think about it. She's trying to factor 6x squared minus 18x plus 12, and she figured out that the greatest common factor was 6. So one way she could think about it is this could be rewritten as six times something else.

To help her think about it, she thought about an area model, where if you had a rectangle, if you had a rectangle like this, and if the height is 6 and the width, let's just call that the width for now. So this is the width right over here. If you multiply 6 times the width, and maybe I could write width right over here, if you multiply 6 times the width, you multiply the height times the width, you're going to get the area.

So imagine that the area of this rectangle was our original expression, 6x squared minus 18x plus 12. And that's exactly what's drawn here. Now, what's interesting is that they broke up the area into three sections. This pink section is the 6x squared, this blue section is the negative 18x, and this peak section is the 12.

Of course, these aren't drawn to scale because we don't even know how wide each of these are because we don't know what x is. So this is all a little bit abstract, but this is to show that we can break our bigger area into three smaller areas.

What's useful about this is we could think about the width of each of these sub-areas, and then we can add them together to figure out the total width. So what is the width of this pink section right over here? Well, 6 times what is 6x squared? Well, 6 times x squared is 6x squared, so the width here is x squared.

Now, what about this blue area? A height of 6 times what width is equal to negative 18x? So let's see, if I take 6 times negative 3, I get negative 18, but then I have to multiply it times an x as well to get negative 18x. So 6 times negative 3x is negative 18x.

And then last but not least, 6, our height of 6, times what is going to be equal to 12? Well, 6 times 2 is equal to 12. So we figured out the widths of each of these sub-regions, and now we know what the total width is.

The total width is going to be our x squared plus our negative 3x plus our two. So the width is going to be x squared, and I can just write that as minus 3x plus 2. So we have answered the question, and you could substitute that back in for this, and you could see if you multiplied 6 times all of this. If you distributed the 6, you would indeed get 6x squared minus 18x plus 12.

More Articles

View All
9 RULES FOR INNER PEACE AND WISDOM FROM MARCUS AURELIUS | STOICISM INSIGHTS
Welcome back, Stoicism Insights community. Brace yourselves for a mind-bending journey into the ancient wisdom of Stoic philosophy, where Marcus Aurelius unveils nine transformative rules destined to revolutionize your approach to life’s challenges. Prepa…
360° Giant Sequoias on a Changing Planet – Part 2 | National Geographic
[Music] One of the things that’s so interesting about the giant sequoia trees is how long they can live: a thousand, two thousand, three thousand years. Although they are incredibly resilient, we’ve managed to change our climate so much. We just don’t rea…
Meaning of the reciprocal
Let’s talk a little bit about reciprocals. Now, when you first learn reciprocals, some folks will immediately tell you, “Hey, just swap the numerator and the denominator.” So, for example, if I have the fraction two-thirds, the reciprocal of two-thirds, …
Balaji Srinivasan at Startup School 2013
I can talk about white combinator. I guess you guys all know about that. Uh, let me introduce myself briefly while, uh, things are loading here. So, uh, my name is Bology S. Boson. Um, there’s actually 12 people with my same first and last name in the Bay…
Jamming with Astronaut Chris Hadfield
Can I just ask you a question? Because we saw your guitar floating around in space there. What happened to that guitar? Where is it? Because that is a remarkable and unique guitar. It’s a Canadian guitar made by Larry Vay by John Larry Veo in Vancouver. …
Moral realism doesn't help you (much)
Moral nihilism, uh, the belief that moral facts don’t exist, or at least that’s how I’m going to define it here. Lord Hawkeye gives the impression that he does believe the moral facts exist. I’m not certain that he really does. A couple of his remarks abo…