yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Factoring quadratics with a common factor | Algebra 1 | Khan Academy


2m read
·Nov 10, 2024

Avril was trying to factor 6x squared minus 18x plus 12. She found that the greatest common factor of these terms was 6 and made an area model. What is the width of Avril's area model? So pause this video and see if you can figure that out, and then we'll work through this together.

All right, so there's a couple of ways to think about it. She's trying to factor 6x squared minus 18x plus 12, and she figured out that the greatest common factor was 6. So one way she could think about it is this could be rewritten as six times something else.

To help her think about it, she thought about an area model, where if you had a rectangle, if you had a rectangle like this, and if the height is 6 and the width, let's just call that the width for now. So this is the width right over here. If you multiply 6 times the width, and maybe I could write width right over here, if you multiply 6 times the width, you multiply the height times the width, you're going to get the area.

So imagine that the area of this rectangle was our original expression, 6x squared minus 18x plus 12. And that's exactly what's drawn here. Now, what's interesting is that they broke up the area into three sections. This pink section is the 6x squared, this blue section is the negative 18x, and this peak section is the 12.

Of course, these aren't drawn to scale because we don't even know how wide each of these are because we don't know what x is. So this is all a little bit abstract, but this is to show that we can break our bigger area into three smaller areas.

What's useful about this is we could think about the width of each of these sub-areas, and then we can add them together to figure out the total width. So what is the width of this pink section right over here? Well, 6 times what is 6x squared? Well, 6 times x squared is 6x squared, so the width here is x squared.

Now, what about this blue area? A height of 6 times what width is equal to negative 18x? So let's see, if I take 6 times negative 3, I get negative 18, but then I have to multiply it times an x as well to get negative 18x. So 6 times negative 3x is negative 18x.

And then last but not least, 6, our height of 6, times what is going to be equal to 12? Well, 6 times 2 is equal to 12. So we figured out the widths of each of these sub-regions, and now we know what the total width is.

The total width is going to be our x squared plus our negative 3x plus our two. So the width is going to be x squared, and I can just write that as minus 3x plus 2. So we have answered the question, and you could substitute that back in for this, and you could see if you multiplied 6 times all of this. If you distributed the 6, you would indeed get 6x squared minus 18x plus 12.

More Articles

View All
Multiplying monomials | Polynomial arithmetic | Algebra 2 | Khan Academy
Let’s say that we wanted to multiply 5x squared, and I’ll do this in purple: 3x to the fifth. What would this equal? Pause this video and see if you can reason through that a little bit. All right, now let’s work through this together. Really, all we’re …
Finding derivative with fundamental theorem of calculus: chain rule | AP®︎ Calculus | Khan Academy
Let’s say that we have the function capital F of x, which we’re going to define as the definite integral from 1 to sine of x. So that’s an interesting upper bound right over there of 2t minus 1, and of course dt. What we are curious about is trying to fi…
CONTACT LIGHT: The Story of Apollo 11
Okay, all flight controllers gonna go for landing retro. Oh, I don’t gel. The 20th of 2019 marked the 50th anniversary of mankind’s most treacherous journey when Apollo 11 astronauts Neil Armstrong and Buzz Aldrin first touched the lunar surface. Over ha…
The Rise of the Machines – Why Automation is Different this Time
How long do you think it will take before machines do your job better than you do? Automation used to mean big, stupid machines doing repetitive work in factories. Today, they can land aircraft, diagnose cancer, and trade stocks. We are entering a new age…
Hershey and Chase conclusively show DNA genetic material
In the last video, we began to see some pretty good evidence that DNA was the molecular basis for inheritance. We saw that from the work of Avery, McCarthy, and Mlead, where they tried to identify whether it was DNA or proteins that acted as a transformat…
SUPER RARE $34,000 Mont Blanc Will DOUBLE in Value | Kevin O'Leary |
[Music] From Germany, just send them straight out the door. Okay, thanks a lot, let’s go upstairs. Welcome to Miami. [Music] So, just coming from—well, we have the head of—we have the head of VP of retail, and I think one of the marketing people are brin…