yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Expected payoff example: protection plan | Probability & combinatorics | Khan Academy


2m read
·Nov 10, 2024

We're told that an electronic store gives customers the option of purchasing a protection plan when customers buy a new television. That's actually quite common. The customer pays $80 for the plan, and if their television is damaged or stops working, the store will replace it for no additional charge. The store knows that two percent of customers who buy this plan end up needing a replacement that costs the store twelve hundred dollars each.

Here is a table that summarizes the possible outcomes from the store's perspective. Let x represent the store's net gain from one of these plans. Calculate the expected net gain, so pause this video, see if you can have a go at that before we work through this together.

So we have the two scenarios here. The first scenario is that the store does need to replace the TV because something happens, and so it's going to cost twelve hundred dollars to the store. But remember, they got eighty dollars for the protection plan, so you have a net gain of negative one thousand one hundred and twenty dollars from the store's perspective.

There's the other scenario, which is more favorable for the store, which is the customer does not need a replacement TV. So that has no cost, and so their net gain is just the eighty dollars for the plan.

To figure out the expected net gain, we just have to figure out the probabilities of each of these and take the weighted average of them. So what's the probability that they will have to replace the TV? Well, we know two percent of customers who buy this plan end up needing a replacement. So we could say this is 2 over 100 or maybe I'll write it as 0.02. This is the probability of x, and then the probability of not needing a replacement is 0.98.

And so, our expected net gain is going to be equal to the probability of needing a replacement times the net gain of a replacement. So it's going to be times negative one thousand one hundred and twenty dollars, and then we're going to have plus the probability of not needing a replacement, which is 0.98 times the net gain there, so that is $80.

So we have 0.02 times negative one thousand one hundred and twenty, and that we're going to add. I'll open parentheses, 0.98 times eighty, closed parentheses, is going to be equal to 56. So this is equal to 56, and now you understand why the stores like to sell these replacement plans.

More Articles

View All
Definite integrals: reverse power rule | AP Calculus AB | Khan Academy
Let’s evaluate the definite integral from negative 3 to 5 of 4 dx. What is this going to be equal to? I encourage you to pause the video and try to figure it out on your own. All right, so in order to evaluate this, we need to remember the fundamental th…
Avni Patel Thompson at the Seattle Female Founders Conference
So the first speaker you’re gonna hear today is Omnipotent Thompson, the founder of Poppy. Poppy is a site that connects parents with great caregivers for their children. So Omni and her co-founder went through Y Combinator in Winter 2016. She’s also an i…
Rothbard on Animal Rights
This video addresses an essay written by Murray Rothbard, which was published on mises.org. The link is in the sidebar. Rothbard talks about—he’s making a case for human rights and against animal rights, or non-human animal rights. So, Rothbard talks abou…
The 5 Millionaire Investing Habits That Changed My Life
What’s up guys, it’s Graham here. So throughout the last 10 years, I have tried every single millionaire productivity optimization life hack that you could think of. From waking up at 5 AM, meditation, creating a to-do list, goal setting, regular exercis…
Inside the Struggle to Save an Endangered Grouper Species | National Geographic
This female Nassau grouper caught off the coast of Biz is taking her last few breaths. The survival of this endangered species, an apex predator, is critical to the survival of the coral reef. The Bellian Barrier Reef, the second longest in the world, is …
Are There Really Stocks You Can Hold FOREVER? (3 Long-term Stocks I Own)
Hey guys, welcome back to the channel! In this video, we’re going to discuss whether it’s possible to buy some stocks now and be able to hold these stocks for the rest of your life and still do quite well in the process. So, we’re gonna have a look at a l…