yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Expected payoff example: protection plan | Probability & combinatorics | Khan Academy


2m read
·Nov 10, 2024

We're told that an electronic store gives customers the option of purchasing a protection plan when customers buy a new television. That's actually quite common. The customer pays $80 for the plan, and if their television is damaged or stops working, the store will replace it for no additional charge. The store knows that two percent of customers who buy this plan end up needing a replacement that costs the store twelve hundred dollars each.

Here is a table that summarizes the possible outcomes from the store's perspective. Let x represent the store's net gain from one of these plans. Calculate the expected net gain, so pause this video, see if you can have a go at that before we work through this together.

So we have the two scenarios here. The first scenario is that the store does need to replace the TV because something happens, and so it's going to cost twelve hundred dollars to the store. But remember, they got eighty dollars for the protection plan, so you have a net gain of negative one thousand one hundred and twenty dollars from the store's perspective.

There's the other scenario, which is more favorable for the store, which is the customer does not need a replacement TV. So that has no cost, and so their net gain is just the eighty dollars for the plan.

To figure out the expected net gain, we just have to figure out the probabilities of each of these and take the weighted average of them. So what's the probability that they will have to replace the TV? Well, we know two percent of customers who buy this plan end up needing a replacement. So we could say this is 2 over 100 or maybe I'll write it as 0.02. This is the probability of x, and then the probability of not needing a replacement is 0.98.

And so, our expected net gain is going to be equal to the probability of needing a replacement times the net gain of a replacement. So it's going to be times negative one thousand one hundred and twenty dollars, and then we're going to have plus the probability of not needing a replacement, which is 0.98 times the net gain there, so that is $80.

So we have 0.02 times negative one thousand one hundred and twenty, and that we're going to add. I'll open parentheses, 0.98 times eighty, closed parentheses, is going to be equal to 56. So this is equal to 56, and now you understand why the stores like to sell these replacement plans.

More Articles

View All
How to Brute Force your way to $1 Million
Let’s get something out of the way: $1 million is not what it used to be. Yeah, it’s not going to be enough to live a lavish lifestyle for the rest of your life, but it will definitely make your life exponentially better than it is right now. Here’s somet…
5 Brutal Truths Men Need to Accept to Live Their Best Lives
Mr. Wonderful here. In this video, I’m going to share the brutal truths you need to accept to live your best life. Number one: your appearance. How you look, how other people see you. You should start worrying about your appearance when you’re in your ea…
How to sell a private jet!
8:00 a.m. Tuesday morning. Our business is truly international across every time zone. During those few hours I spend sleeping, deals, texts, emails, and calls build up, so I spend most of every morning catching up. Today we’re on our way to the Air Chart…
INTEREST RATES WENT NEGATIVE | GOODBYE SAVINGS
Guys, this is the stimulus check and stimulus package update as of Wednesday, May 13th. We’re gonna be covering the stimulus checks and paycheck protection program. And wait a second, wait a second guys, this is the wrong intro. I’m gonna be, I’m gonna be…
Ponzi Factor | SEC Meeting 1
Hi everyone, this is Thanh. A quick note, kind of exciting news! I am in the process, as in either this morning or next hour or so, I’m gonna go into a roundtable meeting with the chairman of the ICC, J. Clayton, and also some other senior officials of th…
One of the Most Important Decisions You'll Make (Hint: It's About Love)
Who do we give our love to and who do we receive love from? I think it’s a huge decision, the most, maybe the most important one, one of the most important decisions. I use the word love. Um, I think different people mean different things by love, so I’m …