yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Expected payoff example: protection plan | Probability & combinatorics | Khan Academy


2m read
·Nov 10, 2024

We're told that an electronic store gives customers the option of purchasing a protection plan when customers buy a new television. That's actually quite common. The customer pays $80 for the plan, and if their television is damaged or stops working, the store will replace it for no additional charge. The store knows that two percent of customers who buy this plan end up needing a replacement that costs the store twelve hundred dollars each.

Here is a table that summarizes the possible outcomes from the store's perspective. Let x represent the store's net gain from one of these plans. Calculate the expected net gain, so pause this video, see if you can have a go at that before we work through this together.

So we have the two scenarios here. The first scenario is that the store does need to replace the TV because something happens, and so it's going to cost twelve hundred dollars to the store. But remember, they got eighty dollars for the protection plan, so you have a net gain of negative one thousand one hundred and twenty dollars from the store's perspective.

There's the other scenario, which is more favorable for the store, which is the customer does not need a replacement TV. So that has no cost, and so their net gain is just the eighty dollars for the plan.

To figure out the expected net gain, we just have to figure out the probabilities of each of these and take the weighted average of them. So what's the probability that they will have to replace the TV? Well, we know two percent of customers who buy this plan end up needing a replacement. So we could say this is 2 over 100 or maybe I'll write it as 0.02. This is the probability of x, and then the probability of not needing a replacement is 0.98.

And so, our expected net gain is going to be equal to the probability of needing a replacement times the net gain of a replacement. So it's going to be times negative one thousand one hundred and twenty dollars, and then we're going to have plus the probability of not needing a replacement, which is 0.98 times the net gain there, so that is $80.

So we have 0.02 times negative one thousand one hundred and twenty, and that we're going to add. I'll open parentheses, 0.98 times eighty, closed parentheses, is going to be equal to 56. So this is equal to 56, and now you understand why the stores like to sell these replacement plans.

More Articles

View All
Becoming a Millionaire: Roth IRA vs 401K (What makes the MOST PROFIT)
What’s up, guys? It’s Graham here. So, here’s a question that’s been coming up a lot recently, and this is a very confusing question for most people. That is this: What is better to invest in, a Roth IRA or traditional 401k? Now, this is actually a some…
7 Best Questions from the 2024 Berkshire Hathaway Annual Meeting (Must Watch)
I don’t regard Utah as, uh, being unfriendly to the idea of utilities being treated fairly. Charlie? [Laughter] [Applause] I had actually checked myself a couple of times already, but I’ll slip again. Each year, tens of thousands of Warren Buffett discip…
Your Body's Molecular Machines
These are tiny molecular machines, and they are doing this inside your body - right now. To understand why, we have to zoom out. Every day, in an adult human body, 50 to 70 billion of your cells die. Either they’re stressed, or damaged, or just old. But t…
Incorporating opposing viewpoints | Reading | Khan Academy
Hello readers! Let’s argue in writing. Argument is a kind of fight, but I think it is unwise to think of it as a one-way conversation. The best arguments do not plunge forward heedlessly; they do not steamroll opposition. Rather, they seek out opposing ar…
3D Photographs Of Things We Have Lost
Just a few years after this photograph was taken, the quagga, a subspecies of zebra, was hunted to extinction. This is actually one of the final two photographs ever taken of the quagga; the other was taken at the exact same moment, just a few inches to t…
Camera Trap Captures Surprise Treetop Proposal | National Geographic
So, I was down in Panama doing research in the canopy of the rainforests. I knew that my boyfriend, Dan, was coming to visit me in a couple of weeks, so I was actually really excited. [Music] I called him up and I told him that he would not only be able t…