yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Expected payoff example: protection plan | Probability & combinatorics | Khan Academy


2m read
·Nov 10, 2024

We're told that an electronic store gives customers the option of purchasing a protection plan when customers buy a new television. That's actually quite common. The customer pays $80 for the plan, and if their television is damaged or stops working, the store will replace it for no additional charge. The store knows that two percent of customers who buy this plan end up needing a replacement that costs the store twelve hundred dollars each.

Here is a table that summarizes the possible outcomes from the store's perspective. Let x represent the store's net gain from one of these plans. Calculate the expected net gain, so pause this video, see if you can have a go at that before we work through this together.

So we have the two scenarios here. The first scenario is that the store does need to replace the TV because something happens, and so it's going to cost twelve hundred dollars to the store. But remember, they got eighty dollars for the protection plan, so you have a net gain of negative one thousand one hundred and twenty dollars from the store's perspective.

There's the other scenario, which is more favorable for the store, which is the customer does not need a replacement TV. So that has no cost, and so their net gain is just the eighty dollars for the plan.

To figure out the expected net gain, we just have to figure out the probabilities of each of these and take the weighted average of them. So what's the probability that they will have to replace the TV? Well, we know two percent of customers who buy this plan end up needing a replacement. So we could say this is 2 over 100 or maybe I'll write it as 0.02. This is the probability of x, and then the probability of not needing a replacement is 0.98.

And so, our expected net gain is going to be equal to the probability of needing a replacement times the net gain of a replacement. So it's going to be times negative one thousand one hundred and twenty dollars, and then we're going to have plus the probability of not needing a replacement, which is 0.98 times the net gain there, so that is $80.

So we have 0.02 times negative one thousand one hundred and twenty, and that we're going to add. I'll open parentheses, 0.98 times eighty, closed parentheses, is going to be equal to 56. So this is equal to 56, and now you understand why the stores like to sell these replacement plans.

More Articles

View All
Education as a force of convergence | Macroeconomics | Khan Academy
We talked about the dissemination of information being a force of convergence on the global scale, but what about on the individual scale? When we’re talking about knowledge dissemination on an individual scale, we’re really talking about education on som…
Why Do People Act Badly? | The Story of God
In small-scale societies and ancestral communities, there were only a couple of hundred individuals. It was relatively easy to keep tabs on one another, and that was really important because social reputation matters. The problem is that the larger the s…
Geometric series as a function | Infinite sequences and series | AP Calculus BC | Khan Academy
So we have this function that’s equal to two minus eight x squared plus 32 x to the fourth minus 128 x to the sixth, and just keeps going and going. So it’s defined as an infinite series, and what I want to explore in this video is: is there another way t…
15 Books To Read After You Made $1 Million
So you made a million dólares, now what? $1 million isn’t what it used to be, but now you’ve got some finance and experience to go exponential. If you’re not there yet, we recommend you go ahead and watch part one of this series, where we handpick the vid…
2021 Goals: How to be Better with Money
[Music] Hey guys, welcome back to the channel. First things first, happy new year! Hope you guys are having a great time, having a bit of time off just to rest and recover and regenerate after a pretty disastrous year that was 2020. But that’s actually k…
Comic-Con WRAP UP: From The Wackygamer Podcast!
We’re here to talk about Comic-Con. What to Comic-Con? Me a lot fun! We wanted to tell you what our favorites, and this favorites, this did spray. I think this favorites is a word, we’re gonna stick with it. Alright, I think my number one favorite—what w…