yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Expected payoff example: protection plan | Probability & combinatorics | Khan Academy


2m read
·Nov 10, 2024

We're told that an electronic store gives customers the option of purchasing a protection plan when customers buy a new television. That's actually quite common. The customer pays $80 for the plan, and if their television is damaged or stops working, the store will replace it for no additional charge. The store knows that two percent of customers who buy this plan end up needing a replacement that costs the store twelve hundred dollars each.

Here is a table that summarizes the possible outcomes from the store's perspective. Let x represent the store's net gain from one of these plans. Calculate the expected net gain, so pause this video, see if you can have a go at that before we work through this together.

So we have the two scenarios here. The first scenario is that the store does need to replace the TV because something happens, and so it's going to cost twelve hundred dollars to the store. But remember, they got eighty dollars for the protection plan, so you have a net gain of negative one thousand one hundred and twenty dollars from the store's perspective.

There's the other scenario, which is more favorable for the store, which is the customer does not need a replacement TV. So that has no cost, and so their net gain is just the eighty dollars for the plan.

To figure out the expected net gain, we just have to figure out the probabilities of each of these and take the weighted average of them. So what's the probability that they will have to replace the TV? Well, we know two percent of customers who buy this plan end up needing a replacement. So we could say this is 2 over 100 or maybe I'll write it as 0.02. This is the probability of x, and then the probability of not needing a replacement is 0.98.

And so, our expected net gain is going to be equal to the probability of needing a replacement times the net gain of a replacement. So it's going to be times negative one thousand one hundred and twenty dollars, and then we're going to have plus the probability of not needing a replacement, which is 0.98 times the net gain there, so that is $80.

So we have 0.02 times negative one thousand one hundred and twenty, and that we're going to add. I'll open parentheses, 0.98 times eighty, closed parentheses, is going to be equal to 56. So this is equal to 56, and now you understand why the stores like to sell these replacement plans.

More Articles

View All
How Much Home You Can ACTUALLY Afford (By Salary)
What’s up, Graham? It’s Guys here. So, have you ever wondered how much money you need to make to buy a house like this, or this, or even this? Well, wander no longer, because today we’ll cover exactly how much income it takes to rent and buy the typical h…
This is why I'll NEVER flip houses...
Lots of you guys, it’s Graham here. So, as many of you know, I’ve been working full-time in real estate since 2008 as a real estate agent, which means I’m kind of getting old now. Now, if you’re doing that, I’ve helped my own clients flip properties for a…
Why it's so hard to get anything done
I don’t know if you’ve ever noticed this, but it seems like the more things that you have to do, the harder it is to do pretty much anything. Like, you have this long list of tasks and responsibilities that seems to be growing longer and longer and longer…
How do I get a loan? | Loans and debt | Financial Literacy | Khan Academy
Let’s say that you wanted to get a loan; maybe a loan for a car or a mortgage for a house. What do you need? What do you need to think about in order to get a loan, especially a loan with a good interest rate? Well, one of the top things that a lender wi…
Worked example: finite geometric series (sigma notation) | High School Math | Khan Academy
Let’s take, let’s do some examples where we’re finding the sums of finite geometric series, and let’s just remind ourselves in a previous video we derived the formula where the sum of the first n terms is equal to our first term times 1 minus our common r…
Discovering Resilience in the Oregon high desert | National Geographic
Nature, the most powerful creative force on earth. (uplifting energetic music) I’m Chef Melissa King. Cooking has taken me to incredible places. Magical. From TV competitions and celebrity galas to countries around the world. I’m heading out to places I’v…