yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying key features of exponential functions | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

We're told to consider the exponential function f where f of x is equal to 3 * 12 to the power of x. Now they ask us several questions about the y-intercept of f, the common ratio of f, and what is the equation of the asymptote of f. So pause this video and see if you can figure these out before we do them together.

All right, so first, what is the y-intercept of f? One way to think about it is what y value, if you were to graph it, if you were to say that y equals f of x. Another way to think about it is, what values does a function take on when x is equal to zero? So another way to think about it: f of 0 is going to be equal to 3 * 12 to the 0. 12 to the 0 power is just one, so it's just 3 * 1, which is equal to 3. So the y-intercept of f is 3.

Why do we call that the y-intercept? Because if you were to graph y equals f of x when x equals 0, whatever the value of the function is, it's going to be intersecting the y-axis at that point.

What is the common ratio of f? So if we're dealing with an exponential function like this, it's the thing that keeps repeatedly getting multiplied, or another way to think, the thing that you're taking the exponent of; and in this situation, that is 1/2. So our common ratio is 1/2.

Now, what is the equation of the asymptote of f? One way to think about an asymptote is does f approach but not quite reach some value as x gets very large or as x becomes very, very negative?

As it becomes very positive or it becomes very negative, let's think about this scenario here. If x becomes very positive, if I were to say take f of, I don't know, 20, that's 3 * 12 to the 20th power. You might realize if I took 1/2 and I multiplied it 20 times, you're going to get a very, very, very small number. It's going to be approaching zero but not quite getting to zero. You multiply it by three, it'll be three times bigger, but it's still going to get very small.

And this is just when x equals 20. If x equals 30, 40, or 100, you're going to get closer and closer to zero because you're taking a number between zero and one, and when every time you multiply, you're getting smaller and smaller and smaller. So if you take it to the 20th, 30th, or 100th power, you're getting closer and closer to zero without actually equaling zero. So as x gets bigger, our function is approaching y equals zero.

So we could say y equals zero. If we go the other way, if we said f of -20, this is the same thing as 3 * 12 to the -20, or we could say this is the same thing as 3 * we could take the reciprocal here and get rid of this negative on the exponent, 3 * 2 over 1, or I could even just say 2 to the 20th power. I don't even need this parenthesis; well, the parentheses are good still.

Now this is going to be a very large number, so it's not really approaching anything. Some people would say it's approaching infinity, but it's not really. As x gets more and more negative, there doesn't seem to be an asymptote there. But as x becomes more and more positive, it looks like our function is approaching y equals 0; it's getting closer and closer to zero without quite reaching it.

Let's do another example here. So here we are asked which exponential function has a y-intercept of 4.5. Pause this video and try to figure that out.

So, as I said, the y-intercept is the value that the function takes on when x equals 0. So let's just try it out here. f of 0, in this situation when x is zero, this is all going to be 1 times a negative, so this is -1. So, not a y-intercept of 4.5; rule that one out.

So g of 0, right over here, is going to be 4.5 * 2 to the 0, which is 1, which is equal to 4.5. I like this one; I will fill it in. Now, let's just double-check this one. h of 0 is equal to 3 * 4.5 to the 0 power, which is 3 * 1, which is equal to 3. So that is not a y-intercept of 4.5, so I'll rule that one out as well.

More Articles

View All
There is no axiomatic proof of property rights
Uh, to avoid confusion, I’ll preface this by saying that, um, I’m personally strongly in favor of property rights and their enforcement. So if you’re new to my channel, please bear that in mind. Uh, Stefan Molyneux made a video a while back attempting to…
Lipstick | Ingredients With George Zaidan (Episode 2)
What’s in here? What’s it do? And can I make it from scratch? It’s the stuff inside yourself. Ingredients. You can think of lipstick as a slightly more complicated crayon. Crayons are made of waxes and colors, and lipsticks have waxes and colors in them t…
Leah Culver of Breaker and Tom Sparks of YC Answer Your Questions About Security and Podcasting
All right, so how about we start with some questions from Twitter. I actually think this one might have been on Facebook, so Brady Simpson asked, “How do we deal with the ever-increasing pressure from governments trying to get into devices?” Tom, do you …
Stupid Simple Life Rules
Life is simple, but most people insist on making it complicated. The more you complicate it, the harder and more stressful it becomes. Living that good and unbothered lifestyle shouldn’t only be a dream; it can become your reality. And that’s what this vi…
Fundamental theorem to evaluate derivative
Let’s say that I were to walk up to you on the street and said, “All right, I have this function g of x which I’m going to define as the definite integral from 19 to x of the cube root of t dt.” And then I were to ask you, “What is the derivative of g ev…
Solving exponential equations using exponent properties | High School Math | Khan Academy
Let’s get some practice solving some exponential equations, and we have one right over here. We have (26^{9x + 5} = 1). So pause the video and see if you can tell me what (x) is going to be. Well, the key here is to realize that (26^0) is equal to 1. Any…