yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying key features of exponential functions | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

We're told to consider the exponential function f where f of x is equal to 3 * 12 to the power of x. Now they ask us several questions about the y-intercept of f, the common ratio of f, and what is the equation of the asymptote of f. So pause this video and see if you can figure these out before we do them together.

All right, so first, what is the y-intercept of f? One way to think about it is what y value, if you were to graph it, if you were to say that y equals f of x. Another way to think about it is, what values does a function take on when x is equal to zero? So another way to think about it: f of 0 is going to be equal to 3 * 12 to the 0. 12 to the 0 power is just one, so it's just 3 * 1, which is equal to 3. So the y-intercept of f is 3.

Why do we call that the y-intercept? Because if you were to graph y equals f of x when x equals 0, whatever the value of the function is, it's going to be intersecting the y-axis at that point.

What is the common ratio of f? So if we're dealing with an exponential function like this, it's the thing that keeps repeatedly getting multiplied, or another way to think, the thing that you're taking the exponent of; and in this situation, that is 1/2. So our common ratio is 1/2.

Now, what is the equation of the asymptote of f? One way to think about an asymptote is does f approach but not quite reach some value as x gets very large or as x becomes very, very negative?

As it becomes very positive or it becomes very negative, let's think about this scenario here. If x becomes very positive, if I were to say take f of, I don't know, 20, that's 3 * 12 to the 20th power. You might realize if I took 1/2 and I multiplied it 20 times, you're going to get a very, very, very small number. It's going to be approaching zero but not quite getting to zero. You multiply it by three, it'll be three times bigger, but it's still going to get very small.

And this is just when x equals 20. If x equals 30, 40, or 100, you're going to get closer and closer to zero because you're taking a number between zero and one, and when every time you multiply, you're getting smaller and smaller and smaller. So if you take it to the 20th, 30th, or 100th power, you're getting closer and closer to zero without actually equaling zero. So as x gets bigger, our function is approaching y equals zero.

So we could say y equals zero. If we go the other way, if we said f of -20, this is the same thing as 3 * 12 to the -20, or we could say this is the same thing as 3 * we could take the reciprocal here and get rid of this negative on the exponent, 3 * 2 over 1, or I could even just say 2 to the 20th power. I don't even need this parenthesis; well, the parentheses are good still.

Now this is going to be a very large number, so it's not really approaching anything. Some people would say it's approaching infinity, but it's not really. As x gets more and more negative, there doesn't seem to be an asymptote there. But as x becomes more and more positive, it looks like our function is approaching y equals 0; it's getting closer and closer to zero without quite reaching it.

Let's do another example here. So here we are asked which exponential function has a y-intercept of 4.5. Pause this video and try to figure that out.

So, as I said, the y-intercept is the value that the function takes on when x equals 0. So let's just try it out here. f of 0, in this situation when x is zero, this is all going to be 1 times a negative, so this is -1. So, not a y-intercept of 4.5; rule that one out.

So g of 0, right over here, is going to be 4.5 * 2 to the 0, which is 1, which is equal to 4.5. I like this one; I will fill it in. Now, let's just double-check this one. h of 0 is equal to 3 * 4.5 to the 0 power, which is 3 * 1, which is equal to 3. So that is not a y-intercept of 4.5, so I'll rule that one out as well.

More Articles

View All
Orphaned Baby Elephants “You Can’t Help But Fall In Love With” | National Geographic
I wanted to go to Kenya to relax a bit with elephants, to see the Sheldrick Wildlife Trust orphaned elephants. Now that’s bittersweet in itself. These are baby elephants, which you can’t help but fall in love with. [Music] Look at these guys! How could y…
The hidden beauty of the A* algorithm
Why are map applications so fast? If I want to find the shortest path from Prague to Rome, Google Maps tells me the answer extremely fast, in about a second or two. If this were your first course in programming, the answer would be that we can represent t…
How To Make The Perfect Bad Plan
This video is for those of you who’ve never started anything on your own but really have the edge. You feel the urge to have something you can call your own, but you just don’t know where or how to start. Well, this video is going to get you started in th…
How to Make a Hero
[Music] Stanford University 1973, professor Philip Zimbardo conducts one of the most infamous experiments in the history of psychology, known as the Stanford Prison Experiment. This dark study of human behavior had student volunteers acting out the roles …
Protecting Leopards From Human & Wildlife Conflicts | National Geographic
[Music] We are very privileged to be able to work together and we make a great team. These days that we want to kill one another, Malice is really passionate about animals. [Music] On the other hand, I look at the scientific side of things. Do you have a …
The Warren Buffett Scandal That Nearly Destroyed Wall Street
In 1991, Warren Buffett, the world’s best investor and most humble billionaire, got caught up in the middle of a scandal that rocked Wall Street and nearly destroyed his personal reputation forever. U.S. Investment Bank Solomon Brothers, of which Buffett …