yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determining the effects on f(x) = x when replaced by af(x) or f(bx) | Khan Academy


2m read
·Nov 10, 2024

We're told here is a graph of a segment of f of x is equal to x, and so they've graphed that segment right over here. Then they tell us that g of x is equal to -2 times f of x, and they want us to graph g. So think about how you would approach that now. Let's work on this together.

So g of x, whatever x is, I would evaluate f of x, and then I would multiply that by -2. So let's pick, say, when we are at x = 3. f of 3, it looks like that is 3. In fact, we know that's 3 because f of x is equal to x. So f of 3 is 3, but if we want to figure out g of 3, that's going to be f of 3 * -2, which is 3 * -2, which is -6. So f of 3 is -6.

Now let's think about when x is equal to -5. We see that f of 5 is 5, which makes sense. But if we were to take g of 5, that's going to be -2 * f of 5, so it's going to be -2 * 5, which is -10. So it would get us down here.

So really, what you see happening when we multiply f of x by -2, well, if we multiply it by two, we would just be scaling everything up by a factor of two, but then that negative flips it over the x-axis to get what we see right over here.

Let's do another example, but it's going to be a little different. Here, instead of multiplying times our f of x, we're multiplying the x by a number. Here’s a graph of the segment f of x is equal to x; we see that again. Now they've defined h of x as being equal to f of (1/3)x.

So let's graph h. One way to think about it is I know what f of 2 is; f of 2 is equal to 2. Now for h, I could actually input 6 in here. I could figure out what h of 6 is. How do I know what that is? How do I know I can do that? Because h of 6 is going to be f of (1/3) * 6. Another way of saying it, h of 6 is going to be the same thing as f of 2.

So h of 6 is the same thing as f of 2, which is 2. Then we could do that on the negative side. For example, we know that f is defined at -3; f of -3 is -3. Now, if we were to go three times that value and we would say what is h of 9? h of 9, we could go over here. h of 9 is equal to f of (1/3) * 9, or it's going to be the same thing as f of -3. f of -3 is -3, so h of 9 is -3.

So notice now we are scaling; we're making it wider when we multiplied inside of our function. As we multiply x times a fraction, if we multiplied this times a value greater than one, then we would be squeezing it in the horizontal direction.

More Articles

View All
The Rise And Fall Of Michael Reeves | My Response
So this is going to be a serious video for two reasons. Number one, it’s my birthday today! I’m 32 years old, and my only birthday wish is that you just hit the like button for the YouTube algorithm. And second, I want to address something that I have av…
Building Furniture and Creating a Home in the Wild | Home in the Wild
JIM: (whistles) North! Yeah! HUDSON: Yeah! JIM: We’re goin’ in the canoe! TORI: Come on, in the boat, please. Good boy! Okay, hon, ready? JIM: We’re heading back to camp with the wood we foraged. HUDSON: Yeah! JIM (off screen): All right, perfect…
Sailing through the Ice Gauntlet: The Maze of Icebergs | Explorer: Lost in the Arctic
This was a town. Some kind of a whaling station. Totally abandoned now. Look at this. This is what I’ve been looking for right here. An iron bollard in the shore, where Franklin tied up their ships. And this was the last anchorage for the Franklin expedit…
15 Billionaire Beliefs That Made Them Billionaires
Sure. Okay. Luck, location, and timing play an enormous part in the outcome. But we’ve been deconstructing billionaires for over a decade now, and the amount of overlap in the way their brain works is crazy. Here are 15 ways billionaires think differently…
Ray Dalio's Warning for the Economic Crisis and U.S. Recession
The biggest issue is that there’s more spending than we have income, and that’s a problem. So then the question is, where are you going to get the money from, right? Dahlia is probably the world’s most well-known macroeconomic investor, having started Br…
Evicting Tenants - My Thoughts
What’s up, guys? It’s Graham here. So I want to take a moment to talk about something serious. Whether or not this affects you, I think this is something worth knowing about and discussing further. That would be the upcoming wave of evictions and mortgag…