yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determining the effects on f(x) = x when replaced by af(x) or f(bx) | Khan Academy


2m read
·Nov 10, 2024

We're told here is a graph of a segment of f of x is equal to x, and so they've graphed that segment right over here. Then they tell us that g of x is equal to -2 times f of x, and they want us to graph g. So think about how you would approach that now. Let's work on this together.

So g of x, whatever x is, I would evaluate f of x, and then I would multiply that by -2. So let's pick, say, when we are at x = 3. f of 3, it looks like that is 3. In fact, we know that's 3 because f of x is equal to x. So f of 3 is 3, but if we want to figure out g of 3, that's going to be f of 3 * -2, which is 3 * -2, which is -6. So f of 3 is -6.

Now let's think about when x is equal to -5. We see that f of 5 is 5, which makes sense. But if we were to take g of 5, that's going to be -2 * f of 5, so it's going to be -2 * 5, which is -10. So it would get us down here.

So really, what you see happening when we multiply f of x by -2, well, if we multiply it by two, we would just be scaling everything up by a factor of two, but then that negative flips it over the x-axis to get what we see right over here.

Let's do another example, but it's going to be a little different. Here, instead of multiplying times our f of x, we're multiplying the x by a number. Here’s a graph of the segment f of x is equal to x; we see that again. Now they've defined h of x as being equal to f of (1/3)x.

So let's graph h. One way to think about it is I know what f of 2 is; f of 2 is equal to 2. Now for h, I could actually input 6 in here. I could figure out what h of 6 is. How do I know what that is? How do I know I can do that? Because h of 6 is going to be f of (1/3) * 6. Another way of saying it, h of 6 is going to be the same thing as f of 2.

So h of 6 is the same thing as f of 2, which is 2. Then we could do that on the negative side. For example, we know that f is defined at -3; f of -3 is -3. Now, if we were to go three times that value and we would say what is h of 9? h of 9, we could go over here. h of 9 is equal to f of (1/3) * 9, or it's going to be the same thing as f of -3. f of -3 is -3, so h of 9 is -3.

So notice now we are scaling; we're making it wider when we multiplied inside of our function. As we multiply x times a fraction, if we multiplied this times a value greater than one, then we would be squeezing it in the horizontal direction.

More Articles

View All
B2B Startup Metrics | Startup School
[Music] Hi there, my name is Tom Blumfield. I’m a group partner at Y Combinator, and today we’re going to be talking about one of my favorite topics: metrics and why they’re so useful for startups. So why are metrics important? First of all, it’s pretty …
Managing your bank account | Banking | Financial Literacy | Khan Academy
In this video, we’re going to talk about how it can be very valuable to automate your deposits and your withdrawals into a checking account, and why that actually might be useful. So in the old days, what would typically happen is someone might cut a che…
Classical Japan during the Heian Period | World History | Khan Academy
What we’re going to do in this video is talk about roughly a thousand years of Japanese history that take us from what’s known as the Classical period of Japan through the Japanese medieval period all the way to the early modern period. The key defining c…
You Don't Need Dopamine Detox
If you’re watching this video on your phone, chances are that before I’m done talking, you’ll get a notification, a text from a friend, a like on a recent post you just shared, or a new follower or subscriber. When this happens, do you feel a rush, a sens…
This Duck Has a Foot Growing On Its Head - Smarter Every Day 25
Hey, it’s me Destin. This week I’ve been in the lab, or my garage, working on my thesis. So, I’m trying to finish it, so I can’t give you an awesome video this week. To hold you over, I’ll give you some video of when me and my daughter went to the fair an…
Fishing Under the Ice | Life Below Zero
♪ CHIP: When you’re providing things, you’re doing things, it’s so much easier when you’re done with the work to sit back and enjoy than to spend a whole day doing nothing. ♪ ♪ CAROL: Come to me, fishy, fishy. WADE: That sounded new to me, too. AGNES: …