yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determining the effects on f(x) = x when replaced by af(x) or f(bx) | Khan Academy


2m read
·Nov 10, 2024

We're told here is a graph of a segment of f of x is equal to x, and so they've graphed that segment right over here. Then they tell us that g of x is equal to -2 times f of x, and they want us to graph g. So think about how you would approach that now. Let's work on this together.

So g of x, whatever x is, I would evaluate f of x, and then I would multiply that by -2. So let's pick, say, when we are at x = 3. f of 3, it looks like that is 3. In fact, we know that's 3 because f of x is equal to x. So f of 3 is 3, but if we want to figure out g of 3, that's going to be f of 3 * -2, which is 3 * -2, which is -6. So f of 3 is -6.

Now let's think about when x is equal to -5. We see that f of 5 is 5, which makes sense. But if we were to take g of 5, that's going to be -2 * f of 5, so it's going to be -2 * 5, which is -10. So it would get us down here.

So really, what you see happening when we multiply f of x by -2, well, if we multiply it by two, we would just be scaling everything up by a factor of two, but then that negative flips it over the x-axis to get what we see right over here.

Let's do another example, but it's going to be a little different. Here, instead of multiplying times our f of x, we're multiplying the x by a number. Here’s a graph of the segment f of x is equal to x; we see that again. Now they've defined h of x as being equal to f of (1/3)x.

So let's graph h. One way to think about it is I know what f of 2 is; f of 2 is equal to 2. Now for h, I could actually input 6 in here. I could figure out what h of 6 is. How do I know what that is? How do I know I can do that? Because h of 6 is going to be f of (1/3) * 6. Another way of saying it, h of 6 is going to be the same thing as f of 2.

So h of 6 is the same thing as f of 2, which is 2. Then we could do that on the negative side. For example, we know that f is defined at -3; f of -3 is -3. Now, if we were to go three times that value and we would say what is h of 9? h of 9, we could go over here. h of 9 is equal to f of (1/3) * 9, or it's going to be the same thing as f of -3. f of -3 is -3, so h of 9 is -3.

So notice now we are scaling; we're making it wider when we multiplied inside of our function. As we multiply x times a fraction, if we multiplied this times a value greater than one, then we would be squeezing it in the horizontal direction.

More Articles

View All
Proof: Matrix determinant gives area of image of unit square under mapping | Matrices | Khan Academy
The goal of this video is to feel good about the connection that we’ve talked about between the absolute value of the determinant of a two by two matrix and the area of the parallelogram that’s defined by the two column vectors of that matrix. So, for ex…
What Forces Are Acting On You?
What are the forces acting on you right now? I want to answer this question by introducing something called a free body diagram. This is a sketch that scientists make that shows all the forces acting on an object. Each force is represented by an arrow; th…
Transit of Venus! Sydney 2012 Contacts, Contracts and Parallax
[Applause] Now there are very few things that will get me out of bed in the morning before 8:00, but the transit of Venus is one of them. Because this is the last time it’s going to happen in my lifetime, so I don’t have to worry about this becoming a reg…
Our Prayers Are With You, Boo | Wicked Tuna: Outer Banks
[Music] All right, man, we’ll give a prayer this morning. Everybody needs it, and we’re going to do it. Lord, we’ll come for you this morning headed out here to the east. I want to thank you for that sunshine. Well, we’re looking at our morning star, th…
How to renovate your private jet
I was going to say, like, what’s a turnaround time for the change of an interior? Also, for example, if you put half a million into renovating the interior, there are three things you could do to the interior: the soft goods, which is all the fabrics, whe…
Introduction to "Meet a chemistry professional"
Have you ever wondered what a chemist really does? In this series, we asked people with chemistry backgrounds to share their stories. We have people from all different fields and careers. For example, we have an interview of someone who works in forensics…