yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determining the effects on f(x) = x when replaced by af(x) or f(bx) | Khan Academy


2m read
·Nov 10, 2024

We're told here is a graph of a segment of f of x is equal to x, and so they've graphed that segment right over here. Then they tell us that g of x is equal to -2 times f of x, and they want us to graph g. So think about how you would approach that now. Let's work on this together.

So g of x, whatever x is, I would evaluate f of x, and then I would multiply that by -2. So let's pick, say, when we are at x = 3. f of 3, it looks like that is 3. In fact, we know that's 3 because f of x is equal to x. So f of 3 is 3, but if we want to figure out g of 3, that's going to be f of 3 * -2, which is 3 * -2, which is -6. So f of 3 is -6.

Now let's think about when x is equal to -5. We see that f of 5 is 5, which makes sense. But if we were to take g of 5, that's going to be -2 * f of 5, so it's going to be -2 * 5, which is -10. So it would get us down here.

So really, what you see happening when we multiply f of x by -2, well, if we multiply it by two, we would just be scaling everything up by a factor of two, but then that negative flips it over the x-axis to get what we see right over here.

Let's do another example, but it's going to be a little different. Here, instead of multiplying times our f of x, we're multiplying the x by a number. Here’s a graph of the segment f of x is equal to x; we see that again. Now they've defined h of x as being equal to f of (1/3)x.

So let's graph h. One way to think about it is I know what f of 2 is; f of 2 is equal to 2. Now for h, I could actually input 6 in here. I could figure out what h of 6 is. How do I know what that is? How do I know I can do that? Because h of 6 is going to be f of (1/3) * 6. Another way of saying it, h of 6 is going to be the same thing as f of 2.

So h of 6 is the same thing as f of 2, which is 2. Then we could do that on the negative side. For example, we know that f is defined at -3; f of -3 is -3. Now, if we were to go three times that value and we would say what is h of 9? h of 9, we could go over here. h of 9 is equal to f of (1/3) * 9, or it's going to be the same thing as f of -3. f of -3 is -3, so h of 9 is -3.

So notice now we are scaling; we're making it wider when we multiplied inside of our function. As we multiply x times a fraction, if we multiplied this times a value greater than one, then we would be squeezing it in the horizontal direction.

More Articles

View All
Sex in Space - Fan Questions | StarTalk
[Music] People, when they think of space, they typically imagine zero G, where everything is floating. But that’s not a prerequisite for being in space. If you have a rotating space station, by way of this centrifugal force of the rotating wheel, you can…
The Ponzi Factor: Banned on Quora
The first fallacy, when I believe the most fundamental falsehood that leads to other false ideas, is the notion that stocks are equity instruments that represent ownership. Finance professionals will argue the stock market can’t be a Ponzi scheme because …
A Beginners Guide to Stock Valuation (Intrinsic Value and Margin of Safety)
[Music] So when it comes to stock market investing, there are a lot of things that we as investors need to remember. For example, we need to understand the business. We need to make sure the business has a long-term durable competitive advantage. We need…
Death Along the Ganges River | The Story of God
Bodies have been cremated on the banks of the River Ganges for hundreds of years, bathed in the waters of their holy river, wrapped in linen, and placed on a wooden pyre. The dead are consumed by flame. Swami Barista, a monk and a doctor, is my guide to d…
Magic Without Lies | Cosmos: Possible Worlds
In the quantum universe, there’s an undiscovered frontier where the laws of our world give way to the ones that apply on the tiniest scale we know. They’re divorced from our everyday experience. How can you think about a world that has different rules tha…
Diane Greene at Startup School 2013
Hi there. I’ve been in this auditorium once before. I think it was before you were born; it was 1989. I was working for Tandem Computers, which was one of the biggest companies in Silicon Valley. The very wonderful, irreverent founder CEO was holding an a…