yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives (implicit equations): find expression | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let's say that we're given the equation that (y^2 - x^2 = 4), and our goal is to find the second derivative of (y) with respect to (x). We want to find an expression for it in terms of (x) and (y). So pause this video and see if you can work through this.

All right, now let's do it together.

Now, some of you might have wanted to solve for (y) and then use some traditional techniques, but here we have a (y^2), and so it might involve a plus or minus square root. Some of y'all might have realized, "Hey, we can do a little bit of implicit differentiation," which is really just an application of the chain rule. So let's do that.

Let's first find the first derivative of (y) with respect to (x). To do that, I'll just take the derivative with respect to (x) of both sides of this equation. And then what do we get? Well, the derivative with respect to (x) of (y^2) — we're going to use the chain rule here. First, we can take the derivative of (y^2) with respect to (y), which is going to be equal to (2y), and then that times the derivative of (y) with respect to (x).

Once again, this comes straight out of the chain rule. Then from that, we will subtract — what's the derivative of (x^2) with respect to (x)? Well, that's just going to be (2x). And then, last but not least, what is the derivative of a constant with respect to (x)? Well, it doesn't change, so it's just going to be equal to (0).

All right, now we can solve for our first derivative of (y) with respect to (x). Let's do that. We can add (2x) to both sides, and we would get (2y) times the derivative of (y) with respect to (x) is equal to (2x). Now, I can divide both sides by (2y), and I am going to get that the derivative of (y) with respect to (x) is equal to (\frac{x}{y}).

Now, the next step is let's take the derivative of both sides of this with respect to (x), and then we can hopefully find our second derivative of (y) with respect to (x). To help us there, actually let me rewrite this, and I always forget the quotient rule — although it might be a useful thing for you to remember — but I could rewrite this as a product, which will help me at least. So I'm going to rewrite this as the derivative of (y) with respect to (x) is equal to (x \cdot y^{-1}).

Now, if we want to find the second derivative, we apply the derivative operator on both sides of this equation — the derivative with respect to (x). Our left-hand side is exactly what we eventually wanted to get, so the second derivative of (y) with respect to (x).

And what do we get here on the right-hand side? Well, we can apply the product rule. So first we can say the derivative of (x) with respect to (x) — well, that is just going to be (1) times the other thing, so times (y^{-1}). Then we have plus (x) times the derivative of (y^{-1}).

So, plus (x) times what’s the derivative of (y^{-1})? Well, first we can find the derivative of (y^{-1}) with respect to (y) — we'll just leverage the power rule there — so that's going to be (-1 \cdot y^{-2}).

Then we would multiply that times the derivative of (y) with respect to (x) — just an application of the chain rule times (\frac{dy}{dx}).

And remember, we know what the derivative of (y) with respect to (x) is. We already solved for that; it is (\frac{x}{y}). So this over here is going to be (\frac{x}{y}), and now we just have to simplify this expression.

This is going to be equal to — and I'll try to do it part by part — that part right over there is just going to be (\frac{1}{y}), and then all of this business — let's see if I can simplify that — this negative is going to go out front, so minus, and then I’m going to have (x \cdot x) in the numerator, and then it's going to be divided by (y^2) and then divided by another (y). So it's going to be minus (\frac{x^2}{y^3}), or another way to think about it: (x^2 \cdot y^{-3}).

And we are done! We have just figured out the second derivative of (y) with respect to (x) in terms of (x) and (y).

More Articles

View All
The Desire to Not Exist
Sleep is good; death is better. Yet surely never to have been born is best. These lines close a 17th-century poem by German writer Hinrich Hine. The piece is titled “Death and His Brother’s Sleep.” It compares these two states, suggesting that we experien…
A live message from Sal on school closures
All right, so we are where I start in a few minutes, probably a few seconds. You don’t mind them, Twitter? Okay, hello! Well, thanks everyone for joining. The whole idea of this livestream, and we’re thinking of doing this as regularly as we can, is obvio…
Tutankhamun's True Burial Chamber | Lost Treasures of Egypt
It’s always exciting. Sometimes there’s even between the workmen a bit of a competition: who will find first? While conservators move the painted walls to the storerooms for safekeeping, T spots something in the sand. We have a pillar, and I can see alrea…
THE AMERICAN DREAM 🇺🇸 IS NO LONGER ATTAINABLE?
So many young Americans feel that the American dream is unattainable. You’ve got to remember these young people, this cohort of individuals, men and women, never lived in a time of rising interest rates or inflation. Obviously, these are great cycles, but…
Subtracting multi digit numbers with regrouping
[Instructor] What we’re gonna do in this video is figure out what 389,002 minus 76,151 is. Like always, I encourage you to pause the video and try to figure it out on your own. That’s the best way to really, even if you’re not able to figure out, or if …
Why I'm NOT Investing in Bitcoin! | Shark Tank's Kevin O'Leary & Anthony Pompliano
You you and I originally clashed, if you want to call it that, around a topic that you’re so engrained with. It’s part of your brand; it’s bitcoin. I’m like everybody else saying, “If it works, I should own some,” but frankly all I’ve seen so far is volat…