yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives (implicit equations): find expression | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let's say that we're given the equation that (y^2 - x^2 = 4), and our goal is to find the second derivative of (y) with respect to (x). We want to find an expression for it in terms of (x) and (y). So pause this video and see if you can work through this.

All right, now let's do it together.

Now, some of you might have wanted to solve for (y) and then use some traditional techniques, but here we have a (y^2), and so it might involve a plus or minus square root. Some of y'all might have realized, "Hey, we can do a little bit of implicit differentiation," which is really just an application of the chain rule. So let's do that.

Let's first find the first derivative of (y) with respect to (x). To do that, I'll just take the derivative with respect to (x) of both sides of this equation. And then what do we get? Well, the derivative with respect to (x) of (y^2) — we're going to use the chain rule here. First, we can take the derivative of (y^2) with respect to (y), which is going to be equal to (2y), and then that times the derivative of (y) with respect to (x).

Once again, this comes straight out of the chain rule. Then from that, we will subtract — what's the derivative of (x^2) with respect to (x)? Well, that's just going to be (2x). And then, last but not least, what is the derivative of a constant with respect to (x)? Well, it doesn't change, so it's just going to be equal to (0).

All right, now we can solve for our first derivative of (y) with respect to (x). Let's do that. We can add (2x) to both sides, and we would get (2y) times the derivative of (y) with respect to (x) is equal to (2x). Now, I can divide both sides by (2y), and I am going to get that the derivative of (y) with respect to (x) is equal to (\frac{x}{y}).

Now, the next step is let's take the derivative of both sides of this with respect to (x), and then we can hopefully find our second derivative of (y) with respect to (x). To help us there, actually let me rewrite this, and I always forget the quotient rule — although it might be a useful thing for you to remember — but I could rewrite this as a product, which will help me at least. So I'm going to rewrite this as the derivative of (y) with respect to (x) is equal to (x \cdot y^{-1}).

Now, if we want to find the second derivative, we apply the derivative operator on both sides of this equation — the derivative with respect to (x). Our left-hand side is exactly what we eventually wanted to get, so the second derivative of (y) with respect to (x).

And what do we get here on the right-hand side? Well, we can apply the product rule. So first we can say the derivative of (x) with respect to (x) — well, that is just going to be (1) times the other thing, so times (y^{-1}). Then we have plus (x) times the derivative of (y^{-1}).

So, plus (x) times what’s the derivative of (y^{-1})? Well, first we can find the derivative of (y^{-1}) with respect to (y) — we'll just leverage the power rule there — so that's going to be (-1 \cdot y^{-2}).

Then we would multiply that times the derivative of (y) with respect to (x) — just an application of the chain rule times (\frac{dy}{dx}).

And remember, we know what the derivative of (y) with respect to (x) is. We already solved for that; it is (\frac{x}{y}). So this over here is going to be (\frac{x}{y}), and now we just have to simplify this expression.

This is going to be equal to — and I'll try to do it part by part — that part right over there is just going to be (\frac{1}{y}), and then all of this business — let's see if I can simplify that — this negative is going to go out front, so minus, and then I’m going to have (x \cdot x) in the numerator, and then it's going to be divided by (y^2) and then divided by another (y). So it's going to be minus (\frac{x^2}{y^3}), or another way to think about it: (x^2 \cdot y^{-3}).

And we are done! We have just figured out the second derivative of (y) with respect to (x) in terms of (x) and (y).

More Articles

View All
Khan for Educators: Welcome to Khan for Educators
Hello teachers, I’m Megan. Welcome to Con for Educators, initial course for teachers on Khan Academy. You are about to begin an exciting learning journey, but first let’s look together at the path that lies ahead. To get started, click the start training…
Khan for Educators: Creating a class
Hi, I’m Megan, and in this video, we’ll walk through setting up a class on Khan Academy. First, log in to Khan Academy. Once you’re logged in, you should land on the teacher dashboard. The teacher dashboard is the starting point for most teacher-focused …
Multiplying monomials | Polynomial arithmetic | Algebra 2 | Khan Academy
Let’s say that we wanted to multiply 5x squared, and I’ll do this in purple: 3x to the fifth. What would this equal? Pause this video and see if you can reason through that a little bit. All right, now let’s work through this together. Really, all we’re …
How to Solve the Scorpion Issue | Primal Survivor
Whoa, look at that! Look at that scorpion right there! There are over 1,700 types of scorpion, but the ones that can kill people live in the desert. I have experience with species like this and know how to avoid getting stung by careful handling. Wow, tha…
Whale Tagging and Why It's Done | Continent 7: Antarctica
My opinion, the most important piece of research coming out of the Antarctic right now is understanding how different species cope with the changing environments: the rapidly warming air, the increased amount of precipitation, the decreased amount of sea …
Impedance
Now we’re going to talk about the idea of impedance. This is a really important idea in electronics, and it’s something that comes from the study of AC analysis. AC analysis is where we limit ourselves to inputs to our circuits that look like sinusoids, c…