yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Digital and analog information | Information Technologies | High School Physics | Khan Academy


3m read
·Nov 10, 2024

In this video, we're going to talk about analog versus digital. Something that's analog can be any value within a given range, while something digital is represented by a number of discrete or separate levels.

To distinguish these two ideas, I like to think about clocks. An analog clock has the numbers and the hands, and it's analog because the motion of those hands is continuous. They can sweep across the circle, representing any of infinite times on that clock. For example, between 3:06 and 3:07, the minute hand is actually going to be at some point between those marks on the clock, showing one of the infinitely possible times that the clock can represent.

Compare that to a digital clock. A digital clock is only going to show you 3:06 or 3:07; it will never display any of the many fractional seconds between those two times. Digital only takes on certain discrete values, and it has a finite number of those values. So, an analog waveform signal will smoothly sweep across the infinitely many possible values it has, while a digital waveform signal will only be at one of a number of discrete values. So, the shape of the wave will be more square or step-like.

Let's check out an example so this makes a little more sense. I like music, so we're going to talk about sound. Sound is an analog signal or wave. So, if we look at a graph of sound volume over time, it's going to have a smooth, continuous analog waveform. Both the amplitude, or the volume, and the frequency, what we hear as pitch, are changing continuously between infinite possible values.

Alright, and that's because sound waves, the vibration of particles propagating through the air, actually change continuously. The very first sound recording and reproduction technology imprinted that analog wave directly onto a material. For example, records imprint that sound wave into vinyl, and cassettes print the sound wave onto tape. A major drawback of this technology is that for the sound to play back exactly as it was recorded, that waveform needs to stay untouched.

Right? So think about scratching vinyl or stretching or smudging a cassette tape. That's directly deforming the wave, so you'll never be able to reproduce the sound exactly as it was recorded. So, technology advanced, and sound waves became digitized. Here's how.

Alright, so recall our analog sound wave. We have a smooth analog wave that's taking on any number of infinitely possible values within this range. In order to digitize this wave, we're going to describe numbers to the amplitude at different points. Alright, watch as magic! So we go over here and make a scale.

So, we're breaking up the amplitudes into discrete possibilities. Then we can go through the wave and at specific points of the wave, measure what is the amplitude based on that scale. So, over here we're at the first point of the scale, at this peak. We're at the second point of our scale, then the first, the third, the second, the fourth, back down to the first. Now that we have this wave broken up into discrete levels, right, we can ascribe the numbers, and we effectively turn this analog wave into a set of numbers: one, two, one, three, two, four, one.

Our wave has been digitized. Now that the digitized wave can be played back through a speaker to recreate the analog wave, as long as a sampling happens at a quick enough rate, humans can't tell the difference.

Alright, so the digitization of waves is all about ascribing specific numbers to some of those mechanical properties of the wave. The important thing here is that now that the wave has been digitized, the digitized sound wave can be reliably stored, processed, and communicated with computers.

So, some information is lost in translation, but once the wave is digitized, its quality will never degrade. Okay, and that allows for a lot more reliable technology because the wave is represented with numbers instead of it being physically imprinted on some material.

So, humans prefer to store information like sound digitally, and there are ways to turn analog signals, which can represent any of infinite possible values, into digital information, which is useful because information is stored only at a number of discrete or separate levels.

More Articles

View All
Complex numbers with the same modulus (absolute value)
[Instructor] We are asked, which of these complex numbers has a modulus of 13? And just as a bit of a hint, when we’re talking about the modulus of a complex number, we’re really just talking about its absolute value. Or if we were to plot it in the compl…
What if We Nuke the Moon?
What would happen if we were to detonate a very, very powerful nuclear weapon on the Moon? Would the explosion knock its orbit towards Earth, causing tidal waves and misery? Could the Moon be destroyed, showering the Earth in a rain of meteoric death? Du…
8 WAYS HOW KINDNESS WILL RUIN YOUR LIFE | STOICISM INSIGHTS
Is being overly kind actually more harmful than helpful? In a world that often equates kindness with virtue, it might seem counterintuitive to suggest that there’s such a thing as too much generosity. Yet, stepping back and examining the philosophy of Sto…
Differentiating polynomials example | Derivative rules | AP Calculus AB | Khan Academy
So I have the function f of X here, and we’re defining it using a polynomial expression. What I would like to do here is take the derivative of our function, which is essentially going to make us take a derivative of this polynomial expression, and we’re …
Fishing Tips: How to Handline | Wicked Tuna: Outer Banks
[Applause] [Music] [Applause] Hand lining is what we used to do years ago, 30 years ago, before Tyler was born, before all these guys were even on a boat fishing. We used to do handlines; now they do rod and rails. They just crank. It’s very important wh…
5 Philosophical Questions Without Satisfying Answers
Some questions have been keeping humanity busy since the dawn of time. Moreover, complete civilizations and religions have been built around these questions. No matter how much we have debated, researched, and observed, there just doesn’t seem to be a sat…