yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Digital and analog information | Information Technologies | High School Physics | Khan Academy


3m read
·Nov 10, 2024

In this video, we're going to talk about analog versus digital. Something that's analog can be any value within a given range, while something digital is represented by a number of discrete or separate levels.

To distinguish these two ideas, I like to think about clocks. An analog clock has the numbers and the hands, and it's analog because the motion of those hands is continuous. They can sweep across the circle, representing any of infinite times on that clock. For example, between 3:06 and 3:07, the minute hand is actually going to be at some point between those marks on the clock, showing one of the infinitely possible times that the clock can represent.

Compare that to a digital clock. A digital clock is only going to show you 3:06 or 3:07; it will never display any of the many fractional seconds between those two times. Digital only takes on certain discrete values, and it has a finite number of those values. So, an analog waveform signal will smoothly sweep across the infinitely many possible values it has, while a digital waveform signal will only be at one of a number of discrete values. So, the shape of the wave will be more square or step-like.

Let's check out an example so this makes a little more sense. I like music, so we're going to talk about sound. Sound is an analog signal or wave. So, if we look at a graph of sound volume over time, it's going to have a smooth, continuous analog waveform. Both the amplitude, or the volume, and the frequency, what we hear as pitch, are changing continuously between infinite possible values.

Alright, and that's because sound waves, the vibration of particles propagating through the air, actually change continuously. The very first sound recording and reproduction technology imprinted that analog wave directly onto a material. For example, records imprint that sound wave into vinyl, and cassettes print the sound wave onto tape. A major drawback of this technology is that for the sound to play back exactly as it was recorded, that waveform needs to stay untouched.

Right? So think about scratching vinyl or stretching or smudging a cassette tape. That's directly deforming the wave, so you'll never be able to reproduce the sound exactly as it was recorded. So, technology advanced, and sound waves became digitized. Here's how.

Alright, so recall our analog sound wave. We have a smooth analog wave that's taking on any number of infinitely possible values within this range. In order to digitize this wave, we're going to describe numbers to the amplitude at different points. Alright, watch as magic! So we go over here and make a scale.

So, we're breaking up the amplitudes into discrete possibilities. Then we can go through the wave and at specific points of the wave, measure what is the amplitude based on that scale. So, over here we're at the first point of the scale, at this peak. We're at the second point of our scale, then the first, the third, the second, the fourth, back down to the first. Now that we have this wave broken up into discrete levels, right, we can ascribe the numbers, and we effectively turn this analog wave into a set of numbers: one, two, one, three, two, four, one.

Our wave has been digitized. Now that the digitized wave can be played back through a speaker to recreate the analog wave, as long as a sampling happens at a quick enough rate, humans can't tell the difference.

Alright, so the digitization of waves is all about ascribing specific numbers to some of those mechanical properties of the wave. The important thing here is that now that the wave has been digitized, the digitized sound wave can be reliably stored, processed, and communicated with computers.

So, some information is lost in translation, but once the wave is digitized, its quality will never degrade. Okay, and that allows for a lot more reliable technology because the wave is represented with numbers instead of it being physically imprinted on some material.

So, humans prefer to store information like sound digitally, and there are ways to turn analog signals, which can represent any of infinite possible values, into digital information, which is useful because information is stored only at a number of discrete or separate levels.

More Articles

View All
Follow a Nat Geo Photographer on His Silk Road Adventure | National Geographic
I’m John Stanley. I’m a photographer with National Geographic magazine here on assignment for part six of the Out of Eden Walk. We started in Africa in January 2013, and we’ve been walking overland, doing slow journalism. Now we’re in Uzbekistan. [Music]…
Separation of Powers and Checks and Balances
This is a great excerpt from Federalist 51 by James Madison. Just as a reminder, the Federalist Papers, which were written by Hamilton, Madison, and John Jay, were an attempt to get the Constitution passed, to get it ratified. So these were really kind of…
How To Live In The Social Media Matrix
This is the challenge, right? We’re all living in this society where these very large and powerful businesses need us all to post a lot. We have to ask ourselves the question: what is the value exchange, and how maybe are we—how do we be careful we’re not…
Constructing a Reed Boat | The Great Human Race
A ton of energy goes into making this boat. All these reeds have to be cut, collected, carried, transported to here. All the cordage has been made, and now we have to take it and actually make the boat. All right, so I live here, and here, and you’re doi…
Relativity: Warping the Fabric of Spacetime
[Music] When someone is asked what they want to do with their life, we’re used to a familiar response: “I want to change the world. I want to make an impact.” While there are certainly many people who have made extraordinary contributions to society over …
Prepositions of space | The parts of speech | Grammar | Khan Academy
Hello, Garans. So we had said previously that prepositions, uh, express relationships between two ideas, right? And we can do that either in time or in space or in other ways. But today I want to talk about prepositions in [Music] space because this is a…