yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 5c | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So part C: Find the x-coordinates of all points of inflection for the graph of f. Give a reason for your answer.

Points of inflection happen when we go from concave upwards to downwards or vice versa. This is true if and only if f double prime of x goes from positive to negative or vice versa.

So, where do we see f double prime of x going from positive to negative? Well, that's going to be true if and only if f prime of x goes from being increasing to decreasing or vice versa.

I'm using a lot of "vice versa" here. Now, I wanted to think of it in terms of f prime because we have the graph of f prime. f prime goes from increasing to decreasing or vice versa, or we could go from decreasing to increasing.

Let's think about it. Let's see over here: f prime is decreasing, decreasing, decreasing, decreasing, and then it increases. So we have a point of inflection right over here, right when f prime of x is 0.

That's because f prime is differentiable, so the derivative is definitely zero right at that point of inflection. Right over here, this happens at x equals negative one.

Then, f prime starts increasing, but then right at x equals one, it starts decreasing. So at x equals one, we have another point of inflection, and that's where we have that zero—a tangent line with slope zero.

Then, we're decreasing, decreasing, decreasing, decreasing, decreasing, increasing. Alright, so this is going to be another point of inflection at x equals 3.

So these are our three points of inflection. This happens at x equals negative one, x equals one, and x equals three. These three points on our graph of f prime show where f prime goes from decreasing to increasing or increasing to decreasing or decreasing to increasing.

Alright, now, well, I'll do the last part of the next video.

More Articles

View All
Colonizing Mars | StarTalk
So let’s go piece by piece. One-way mission with people who would just agree to go one way, and he sends supplies in advance. There’s going to set up Hab modules. I’ve got an image of what his Hab modules would look like on Mars. I think we can put it up …
We Worry About Problems We Don't Even Have | Eastern Philosophy
Two people attend a house party, where they socialize with the same guests, drink from the same beer tap, and are exposed to the same music and atmosphere. They decide to share a taxi and drive home when the party is over as they live closely together. “…
Gordon Ramsay Goes Cast Net Fishing in Laos | Gordon Ramsay: Uncharted
First of all, an absolute pleasure because you’ve helped put Lao cuisine on the map. I’m dying to get to understand Lao cuisine. Food not too sweet, but we use lots of stuff that we get from the forest or swimming river. We also use more herbs. Wow, that…
I watched the Eclipse in Argentina - Smarter Every Day 221
Hey, it’s me, Destin. Welcome back to Smarter Every Day. I am in the globe museum in Vienna, Austria, and going to show you something really neat. This is called a Lunarium. A Lunarium is a really interesting device used to calculate the position of solar…
2009 Berkshire Hathaway Annual Meeting (Full Version)
[Applause] Good morning! I’m Warren, the hyperkinetic fellow. Here is Charlie, and we’re going to go in just a minute to a question and answer section that, at least, a question session that will be a little different than last year. We have a panel, I ca…
Bloodwood: Rosewood Trafficking Is Destroying This National Park | National Geographic
Cambodia was once cloaked with forests. This is what it looks like today: more than half of the country’s trees have been clear-cut. Foreign appetites for red timbers are driving the destruction, and none is prized more than this Siamese rosewood. In Chin…