yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: exponential solution to differential equation | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we've got the differential equation: the derivative of y with respect to x is equal to 3 times y, and we want to find the particular solution that gives us y being equal to 2 when x is equal to 1.

So I encourage you to pause this video and see if you can figure this out on your own.

All right, now let's work through it together. Some of you might have immediately said, "Hey, this is the form of a differential equation where the solution is going to be an exponential," and you just got right to it. But I'm not going to go straight to that; I'm just going to recognize that this is a separable differential equation, and then I'm going to solve it that way.

When I say it's separable, that means we can separate all the y's (dy's) on one side and all the x's (dx's) on the other side. So what I could do is, if I divide both sides of this equation by y and multiply both sides by dx, I get 1 over y (dy) is equal to 3 (dx).

Now, on the left and right-hand sides, I have these clean things that I can now integrate. That's what people talk about when they say "separable differential equations."

Now here on the left, if I wanted to write it in a fairly general form, I could write, well, the anti-derivative of 1 over y is going to be the natural log of the absolute value of y. I'm taking the anti-derivative with respect to y here. Now I could add a constant, but I'm going to add a constant on the right-hand side. So there's no reason to add two arbitrary constants on both sides; I can just add one on one side.

So that is going to be equal to the anti-derivative here, which is going to be 3x, and I'll add the promised constant plus c right over there. Now let's think about it a little bit.

Well, we can rewrite this in exponential form. We could say we could write that e to the (3x + c) is equal to the natural log of y. I could write the natural log of y is equal to e to the (3x + c). Now I could rewrite this as equal to e to the 3x times e to the c.

Now e to the c is just going to be some other arbitrary constant, which I could still denote by c. They're going to be different values, but we're just trying to get a sense of what the structure of this thing looks like. So we could say this is going to be some constant times e to the 3x.

So another way of thinking about it is saying the absolute value of y is equal to this. This isn't a function yet; we're trying to find a function solution to this differential equation. So this would tell us that either y is equal to c e to the 3x, or y is equal to negative c e to the 3x.

Well, we've kept it in general terms; I haven't put any—we don't know what c is. So what we could do instead is just pick this one and then we can solve for c, assuming this one right over here, and so we will see if we can meet these constraints using this, and it'll essentially take the other one into consideration, whether we're going positive or negative.

So let's do that. When y is equal to 2, I'm not going to solve for c to find the particular solution. x is equal to 1, or when x is equal to 1, y is equal to 2. So I could write it like that, and we get 2 is equal to c times e to the (3 times 1).

And so to solve for c, I can just divide both sides by e to the third, and so I could—or I could multiply both sides times e to the negative third, and I could get 2 e to the negative third power is equal to c.

And so let's now substitute it back in, and our particular solution is going to be y is equal to c, c is 2 e to the negative third power times e to the 3x. Now I have—I'm taking the product of two things with the same base; I can add the exponents.

So I could say y is equal to 2 times e to the (3x), and then I'll add the exponents to 3x minus 3. And there you go; this is one way that you could write the particular solution that meets these constraints for this separable differential equation.

More Articles

View All
15 Habits That Help You Balance Life Better
Alexer, have you ever in your life, in this year or even in this week, felt truly balanced? Have you ever felt like you did everything you wanted to do, hit your goals, were present with people in your life, and nailed your work? It’s a great feeling, but…
npage85: knowing the fundamental character of X
And page 85 made a video called “The Brain Doesn’t Create the Mind.” In it, he tried to use a deductive argument to prove the existence of souls. It went like this: Premise one: All fundamentally same processes create fundamentally same products. Premis…
15 Ways to Get Rich in the New Economy
People used to get rich because of oil and big industry. You had to employ thousands of people to be one of the select few that service the population in order for you to become wealthy. But now, things have changed. The way the economy works has changed.…
Safari Live - Day 344 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Good afternoon everybody! Welcome once again to the Sunset Safari down in Juma, South Africa, where we sit with a few lions…
Derivatives of tan(x) and cot(x) | Derivative rules | AP Calculus AB | Khan Academy
We already know the derivatives of sine and cosine. We know that the derivative with respect to x of sine of x is equal to cosine of x. We know that the derivative with respect to x of cosine of x is equal to negative sine of x. So, what we want to do in…
Residual plots | Exploring bivariate numerical data | AP Statistics | Khan Academy
What we’re going to do in this video is talk about the idea of a residual plot for a given regression and the data that it’s trying to explain. So right over here we have a fairly simple least squares regression. We’re trying to fit four points. In previ…