yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of tan(x) and cot(x) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We already know the derivatives of sine and cosine. We know that the derivative with respect to x of sine of x is equal to cosine of x. We know that the derivative with respect to x of cosine of x is equal to negative sine of x.

So, what we want to do in this video is find the derivatives of the other basic trig functions. In particular, we know, let's figure out what the derivative with respect to x is. Let's first do tangent of x. Tangent of x, well, this is the same thing as trying to find the derivative with respect to x of tangent of x. Tangent of x is just sine of x over cosine of x.

Since it can be expressed as the quotient of two functions, we can apply the quotient rule here to evaluate this or to figure out what this is going to be. The quotient rule tells us that this is going to be the derivative of the top function, which we know is cosine of x, times the bottom function, which is cosine of x. So, times sine of x minus the top function, which is sine of x, times the derivative of the bottom function.

So, the derivative of cosine of x is negative sine of x. So, I could put the sine of x there, but where the negative can just cancel that out and it's going to be over the bottom function squared, so cosine squared of x. Now, what is this?

Well, what we have here, this is just cosine squared of x. This is just sine squared of x. We know from the Pythagorean identity, and this really just comes out of the unit circle definition, that cosine squared of x plus sine squared of x is going to be equal to one for any x. So, all of this is equal to 1, and so we end up with 1 over sine squared of x, which is the same thing as secant squared of x.

So, this is just secant squared of x. So that’s pretty straightforward. Now, let's just do the inverse, or you could say the reciprocal, I should say, of the tangent function, which is the cotangent. So, that was fun, so let's do that.

The derivative with respect to x of cotangent of x, well, same idea; that's the derivative with respect to x. And this time, let me make some sufficiently large brackets. So, now this is cosine of x over sine of x. But once again we can use the quotient rule here.

So, this is going to be the derivative of the top function, which is negative sine of x times the bottom function, so times sine of x, minus the top function, cosine of x, times the derivative of the bottom function, which is just going to be another cosine of x, and then all of that over the bottom function squared, so sine squared of x.

Now, what does this simplify to? Let's see. This is sine of x, although we have a negative there, minus cosine squared of x. But we could factor out the negative, and this would be sine squared of x plus cosine squared of x. Well, this is just one by the Pythagorean identity.

And so, this is negative one over sine squared of x. Negative one over sine squared of x, and that is the same thing as negative cotangent squared of x. There you go.

More Articles

View All
8 Key Principles To OVERCOME Self-Doubt & Negative Thoughts | Stoicism Insights
Every single one of us at some point in our lives faces that sneaky, undermining whisper of self-doubt. It’s like a shadow that lingers just out of sight, waiting to cloud our decisions and dampen our spirits. But here’s the catch. The real battle isn’t a…
Your Family Tree Explained
This is you, this is your family tree and this is your family tree explained. You have parents, and your parents have parents. These are your grandparents, who also have parents - your great grandparents. Keep adding parents, keep adding “greats.” For eve…
BRA GUN??? -- Mind Blow #17
A bra gun holster? An electromagnet plus balls equals woooo! Vsauce, Kevin here. This is Mind Blow. Touch screens are okay, but how about touching a force field? Using infrared sensors, this multi-touch system allows a traditional monitor to be manipulat…
The Cleverest Productivity Hack | Productivity Hacks for Students
This is a good idea. So, I used to buy this gum from the grocery store, and it was just like regular Wrigley’s Extra or whatever. But it was my study gum, so I only studied it when I chewed it, and I only chewed it when I was about to study. It was like m…
David Rusenko at Startup School 2012
Well, thanks for having me, guys. Uh, you can hear me all right? Cool! So, I wanted to start by just uh, going over the Weebly story a little bit, telling you uh, kind of how we got to where we got to today and some of the lessons we learned along the way…
The Hindu Interpretation of Creation | The Story of God
In the beginning, Hindus believed Ganga flowed in the heavens, but she was held captive by the creator god Brahma. Then Brahma decided to send the river Ganga down to Earth, but there is one problem: Ganga has got such mighty floods, and if she comes on E…