yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of tan(x) and cot(x) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We already know the derivatives of sine and cosine. We know that the derivative with respect to x of sine of x is equal to cosine of x. We know that the derivative with respect to x of cosine of x is equal to negative sine of x.

So, what we want to do in this video is find the derivatives of the other basic trig functions. In particular, we know, let's figure out what the derivative with respect to x is. Let's first do tangent of x. Tangent of x, well, this is the same thing as trying to find the derivative with respect to x of tangent of x. Tangent of x is just sine of x over cosine of x.

Since it can be expressed as the quotient of two functions, we can apply the quotient rule here to evaluate this or to figure out what this is going to be. The quotient rule tells us that this is going to be the derivative of the top function, which we know is cosine of x, times the bottom function, which is cosine of x. So, times sine of x minus the top function, which is sine of x, times the derivative of the bottom function.

So, the derivative of cosine of x is negative sine of x. So, I could put the sine of x there, but where the negative can just cancel that out and it's going to be over the bottom function squared, so cosine squared of x. Now, what is this?

Well, what we have here, this is just cosine squared of x. This is just sine squared of x. We know from the Pythagorean identity, and this really just comes out of the unit circle definition, that cosine squared of x plus sine squared of x is going to be equal to one for any x. So, all of this is equal to 1, and so we end up with 1 over sine squared of x, which is the same thing as secant squared of x.

So, this is just secant squared of x. So that’s pretty straightforward. Now, let's just do the inverse, or you could say the reciprocal, I should say, of the tangent function, which is the cotangent. So, that was fun, so let's do that.

The derivative with respect to x of cotangent of x, well, same idea; that's the derivative with respect to x. And this time, let me make some sufficiently large brackets. So, now this is cosine of x over sine of x. But once again we can use the quotient rule here.

So, this is going to be the derivative of the top function, which is negative sine of x times the bottom function, so times sine of x, minus the top function, cosine of x, times the derivative of the bottom function, which is just going to be another cosine of x, and then all of that over the bottom function squared, so sine squared of x.

Now, what does this simplify to? Let's see. This is sine of x, although we have a negative there, minus cosine squared of x. But we could factor out the negative, and this would be sine squared of x plus cosine squared of x. Well, this is just one by the Pythagorean identity.

And so, this is negative one over sine squared of x. Negative one over sine squared of x, and that is the same thing as negative cotangent squared of x. There you go.

More Articles

View All
Classical Japan during the Heian Period | World History | Khan Academy
What we’re going to do in this video is talk about roughly a thousand years of Japanese history that take us from what’s known as the Classical period of Japan through the Japanese medieval period all the way to the early modern period. The key defining c…
Building Furniture and Creating a Home in the Wild | Home in the Wild
JIM: (whistles) North! Yeah! HUDSON: Yeah! JIM: We’re goin’ in the canoe! TORI: Come on, in the boat, please. Good boy! Okay, hon, ready? JIM: We’re heading back to camp with the wood we foraged. HUDSON: Yeah! JIM (off screen): All right, perfect…
Sound Meets Sculpture and Robotics - Tech+Art | Genius: Picasso
They say that every new technology has some potential military application, but I’d like to think that most new technologies seem to have musical possibilities and applications also. For about 300 years, the pipe organ was the most complex thing that huma…
Growth Hacks Rich People Use All The Time
Everyone’s got access to growth opportunities, but not everyone takes them. The main reason they fail to do so is because they’re just not aware of them. It’s really easy to miss something you’re not actually looking for. By the end of this video, you’ll …
The discovery of the double helix structure of DNA
In 1865, Mendel, often considered the father of modern genetics, comes up with a structured way of thinking about these inheritable factors, which we now call genes. Then, as we go into the early 1900s, his work was rediscovered, and people started to say…
Homeroom with Sal & Tom Inglesby, MD - Tuesday, September 8
Welcome to the Homeroom livestream. We have a very exciting conversation planned, but before we dive into that, I’ll give you my standard announcements. First of all, just a reminder that Khan Academy is a not-for-profit organization, and we wouldn’t exis…