yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of tan(x) and cot(x) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We already know the derivatives of sine and cosine. We know that the derivative with respect to x of sine of x is equal to cosine of x. We know that the derivative with respect to x of cosine of x is equal to negative sine of x.

So, what we want to do in this video is find the derivatives of the other basic trig functions. In particular, we know, let's figure out what the derivative with respect to x is. Let's first do tangent of x. Tangent of x, well, this is the same thing as trying to find the derivative with respect to x of tangent of x. Tangent of x is just sine of x over cosine of x.

Since it can be expressed as the quotient of two functions, we can apply the quotient rule here to evaluate this or to figure out what this is going to be. The quotient rule tells us that this is going to be the derivative of the top function, which we know is cosine of x, times the bottom function, which is cosine of x. So, times sine of x minus the top function, which is sine of x, times the derivative of the bottom function.

So, the derivative of cosine of x is negative sine of x. So, I could put the sine of x there, but where the negative can just cancel that out and it's going to be over the bottom function squared, so cosine squared of x. Now, what is this?

Well, what we have here, this is just cosine squared of x. This is just sine squared of x. We know from the Pythagorean identity, and this really just comes out of the unit circle definition, that cosine squared of x plus sine squared of x is going to be equal to one for any x. So, all of this is equal to 1, and so we end up with 1 over sine squared of x, which is the same thing as secant squared of x.

So, this is just secant squared of x. So that’s pretty straightforward. Now, let's just do the inverse, or you could say the reciprocal, I should say, of the tangent function, which is the cotangent. So, that was fun, so let's do that.

The derivative with respect to x of cotangent of x, well, same idea; that's the derivative with respect to x. And this time, let me make some sufficiently large brackets. So, now this is cosine of x over sine of x. But once again we can use the quotient rule here.

So, this is going to be the derivative of the top function, which is negative sine of x times the bottom function, so times sine of x, minus the top function, cosine of x, times the derivative of the bottom function, which is just going to be another cosine of x, and then all of that over the bottom function squared, so sine squared of x.

Now, what does this simplify to? Let's see. This is sine of x, although we have a negative there, minus cosine squared of x. But we could factor out the negative, and this would be sine squared of x plus cosine squared of x. Well, this is just one by the Pythagorean identity.

And so, this is negative one over sine squared of x. Negative one over sine squared of x, and that is the same thing as negative cotangent squared of x. There you go.

More Articles

View All
Citing evidence in literary analysis | Reading | Khan Academy
Hello readers! The following video contains explicit content. Well, okay, not in the way you’re thinking. Uh, it doesn’t contain violence, obscenity, or profanity, or even anything that wouldn’t appear in a G-rated movie. But it will contain explicit evid…
What is Beautiful Deleveraging?
A number of people asked me, “What is a beautiful deleveraging?” Well, first let me start with what is the deleveraging. Sometimes there’s too much debt burden, which also means that somebody’s holding too many debt assets and they’re not going to get pai…
Become Who You're Afraid To Be | The Philosophy of Carl Jung
Most people are afraid to fully be themselves. They’re afraid to embrace the parts of themselves that might be regarded as unacceptable because embracing these unacceptable parts makes them feel uncomfortable. So, to escape this uncomfortableness, they di…
The Immigrant Journey Behind A Silicon Valley Success Story
Immigrants, we get the job done. Today we’re sitting down with one of the best founders of a generation, Tracy Young, co-founder of PlanGrid, which sold to Autodesk for 875 million dollars, who’s back with her new startup called Tiger Eye. But today, sinc…
Example naming ionic compound
Let’s get some practice naming ionic compounds. I have a formula for an ionic compound right over here, but how would I say this? If you get inspired, pause the video and try to work it out on your own. Well, we could see that it has some magnesium, and …
Understanding scatterplots | Representing data | Grade 5 (TX TEKS) | Khan Academy
We’re told the table below shows the ages of six people and the number of pets they own. So, this row is age of people, and then the second row is the number of pets. So the person who’s nine years old owned four pets. The person who’s eight years old ow…