yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of tan(x) and cot(x) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We already know the derivatives of sine and cosine. We know that the derivative with respect to x of sine of x is equal to cosine of x. We know that the derivative with respect to x of cosine of x is equal to negative sine of x.

So, what we want to do in this video is find the derivatives of the other basic trig functions. In particular, we know, let's figure out what the derivative with respect to x is. Let's first do tangent of x. Tangent of x, well, this is the same thing as trying to find the derivative with respect to x of tangent of x. Tangent of x is just sine of x over cosine of x.

Since it can be expressed as the quotient of two functions, we can apply the quotient rule here to evaluate this or to figure out what this is going to be. The quotient rule tells us that this is going to be the derivative of the top function, which we know is cosine of x, times the bottom function, which is cosine of x. So, times sine of x minus the top function, which is sine of x, times the derivative of the bottom function.

So, the derivative of cosine of x is negative sine of x. So, I could put the sine of x there, but where the negative can just cancel that out and it's going to be over the bottom function squared, so cosine squared of x. Now, what is this?

Well, what we have here, this is just cosine squared of x. This is just sine squared of x. We know from the Pythagorean identity, and this really just comes out of the unit circle definition, that cosine squared of x plus sine squared of x is going to be equal to one for any x. So, all of this is equal to 1, and so we end up with 1 over sine squared of x, which is the same thing as secant squared of x.

So, this is just secant squared of x. So that’s pretty straightforward. Now, let's just do the inverse, or you could say the reciprocal, I should say, of the tangent function, which is the cotangent. So, that was fun, so let's do that.

The derivative with respect to x of cotangent of x, well, same idea; that's the derivative with respect to x. And this time, let me make some sufficiently large brackets. So, now this is cosine of x over sine of x. But once again we can use the quotient rule here.

So, this is going to be the derivative of the top function, which is negative sine of x times the bottom function, so times sine of x, minus the top function, cosine of x, times the derivative of the bottom function, which is just going to be another cosine of x, and then all of that over the bottom function squared, so sine squared of x.

Now, what does this simplify to? Let's see. This is sine of x, although we have a negative there, minus cosine squared of x. But we could factor out the negative, and this would be sine squared of x plus cosine squared of x. Well, this is just one by the Pythagorean identity.

And so, this is negative one over sine squared of x. Negative one over sine squared of x, and that is the same thing as negative cotangent squared of x. There you go.

More Articles

View All
Apple CEO Tim Cook on what it takes to run the world's largest company | Dua Lipa: At Your Service
[Music] Tim, thank you! It’s so great to be here. It’s so great to have you here, honestly. It’s amazing to have you here at home on my sofa, and I love it. It’s beautiful. Thank you. I—I have to say, like, before this interview, I went on the internet t…
How To Improve Your Charisma
Do you ever wonder how some people seem to fit in everywhere and get along with literally everyone? Everybody wants to enjoy their company, talk to them, and wherever they go, there’s no such thing as a closed door or somebody standing in their way. Are t…
Representatives as delegates, trustees, and politicos | US government and civics | Khan Academy
What we’re going to do in this video is talk about congressional roles. Now, what do I mean by congressional roles? Well, whether someone is a member of the House of Representatives or the Senate, or even one of the state legislatures, there’s different w…
Frogs Come Alive After Winter Thaw | National Geographic
NARRATOR: While the rivers and ponds are melting, the ground remains frozen. And under the leaf litter, someone is pulling off a miracle. [intriguing music] This wood frog is frozen solid. Even his eyes are iced over. There’s no pulse, no breath. Slowly t…
Worked example identifying sample study
Let’s look, let’s take a look at some statistical studies and see if we can figure out what type they are. So this first one, Roy’s toys received a shipment of 100,000 rubber duckies from the factory. The factory couldn’t promise that all rubber duckies a…
What Dinosaurs ACTUALLY Looked Like?
The past is a vast and mysterious land that begins at the big bang and ends in the present, expanding with each passing moment. It is the home of everything that came before, the key to understanding our present. Here we find the most amazing creatures to…