yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of tan(x) and cot(x) | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We already know the derivatives of sine and cosine. We know that the derivative with respect to x of sine of x is equal to cosine of x. We know that the derivative with respect to x of cosine of x is equal to negative sine of x.

So, what we want to do in this video is find the derivatives of the other basic trig functions. In particular, we know, let's figure out what the derivative with respect to x is. Let's first do tangent of x. Tangent of x, well, this is the same thing as trying to find the derivative with respect to x of tangent of x. Tangent of x is just sine of x over cosine of x.

Since it can be expressed as the quotient of two functions, we can apply the quotient rule here to evaluate this or to figure out what this is going to be. The quotient rule tells us that this is going to be the derivative of the top function, which we know is cosine of x, times the bottom function, which is cosine of x. So, times sine of x minus the top function, which is sine of x, times the derivative of the bottom function.

So, the derivative of cosine of x is negative sine of x. So, I could put the sine of x there, but where the negative can just cancel that out and it's going to be over the bottom function squared, so cosine squared of x. Now, what is this?

Well, what we have here, this is just cosine squared of x. This is just sine squared of x. We know from the Pythagorean identity, and this really just comes out of the unit circle definition, that cosine squared of x plus sine squared of x is going to be equal to one for any x. So, all of this is equal to 1, and so we end up with 1 over sine squared of x, which is the same thing as secant squared of x.

So, this is just secant squared of x. So that’s pretty straightforward. Now, let's just do the inverse, or you could say the reciprocal, I should say, of the tangent function, which is the cotangent. So, that was fun, so let's do that.

The derivative with respect to x of cotangent of x, well, same idea; that's the derivative with respect to x. And this time, let me make some sufficiently large brackets. So, now this is cosine of x over sine of x. But once again we can use the quotient rule here.

So, this is going to be the derivative of the top function, which is negative sine of x times the bottom function, so times sine of x, minus the top function, cosine of x, times the derivative of the bottom function, which is just going to be another cosine of x, and then all of that over the bottom function squared, so sine squared of x.

Now, what does this simplify to? Let's see. This is sine of x, although we have a negative there, minus cosine squared of x. But we could factor out the negative, and this would be sine squared of x plus cosine squared of x. Well, this is just one by the Pythagorean identity.

And so, this is negative one over sine squared of x. Negative one over sine squared of x, and that is the same thing as negative cotangent squared of x. There you go.

More Articles

View All
Unlocking the Eyes | Explorer
[Music] What boggles my mind about the eye is everything. But I’m really, really excited by the advances in technology made possible by research, not just into the eye, but into how natural selection caused it to be what it is. The next few decades are go…
The Egyptian and Hittite Peace Treaty | Lost Treasures of Egypt
[Music] In Luxor’s Karnak Temple, Colleen is hunting for clues that explain Ramsay’s rise to power. Ramses was a mighty warrior and general who fought in many campaigns and expanded Egypt’s borders to the east and south. But the temple walls suggest that’…
DONALD TRUMP'S FULL SPEECH | Trump claims victory, addresses supporters in Florida
Thank you very much. Wow! Well, I want to thank you all very much. This is great. These are our friends. We have thousands of friends on this incredible movement. This was a movement like nobody’s ever seen before, and frankly, this was, I believe, the gr…
Making SOLID Nitrogen!
Boiling point is something that we normally think of as a stable property of a substance. But it really depends on what the pressure is around the substance. So, for example, water only boils at 100 degrees Celsius if the pressure is 1 atmosphere. So if …
Encryption and public keys | Internet 101 | Computer Science | Khan Academy
[Music] Hi, my name is Mia Gilner. I’m majoring in computer science at UC Berkeley, and I work for the Department of Defense where I try to keep information safe. The internet is an open and public system. We all send and receive information over shared …
Limits of combined functions | Limits and continuity | AP Calculus AB | Khan Academy
So let’s find the limit of f of x times h of x as x approaches 0. All right, we have graphical depictions of the graphs y equals f of x and y equals h of x. We know from our limit properties that this is going to be the same thing as the limit as x appro…