yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: forming a slope field | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

In drawing the slope field for the differential equation, the derivative of y with respect to x is equal to y minus 2x. I would place short line segments at select points on the xy-plane.

At the point (-1, 1), I would draw a short segment of slope blank. Like always, pause this video and see if you can fill out these three blanks.

When you're drawing the short segments to construct this slope field, you figure out their slope based on the differential equation. So, you're saying when x is equal to -1 and y is equal to 1, what is the derivative of y with respect to x? That's what this differential equation tells us.

So, for this first case, the derivative of y with respect to x is going to be equal to y, which is 1, minus 2 times x. x is -1, so this is going to be negative 2, but you're subtracting it, so it's going to be plus 2. Therefore, the derivative of y with respect to x at this point is going to be 3.

I would draw a short segment or a short segment of slope 3. We keep going. At the point (0, 2), let's see. When x is 0 and y is 2, the derivative of y with respect to x is going to be equal to y, which is 2, minus 2 times 0. Well, that's just going to be 2.

Now, last but not least, for this third point, the derivative of y with respect to x is going to be equal to y, which is 3, minus 2 times x. x here is 2. So, 2 times 2 is 4, and 3 minus 4 is equal to negative 1.

And that's all that problem asks us to do. Now, if we actually had to do it, it would look something like—I'll try to draw it real fast.

So, let's see. Let me make sure I go to make sure I have space for all of these points here. So, that's my coordinate axes, and I want to get the point (0, 2). That's (0, 2). Actually, I want to go all the way to (2, 3). So, let me get some space here. So, 1, 2, 3; and then 1, 2, 3.

Then we have to go to (-1, 1). We might go right over here. For this first one, this exercise isn't asking us to do it, but I'm just making it very clear how we would construct the slope field.

So, the point (-1, 1)—a short segment of slope 3. Slope 3 would look something like that. Then at the point (0, 2)—a slope of 2. (0, 2), the slope is going to be 2, which looks something like that.

Then at the point (2, 3)—at (2, 3), a short segment of slope negative 1. So, (2, 3), a segment of slope negative 1, would look something like that.

You would keep doing this at more and more points. If you had a computer to do it, that's what the computer would do, and you would draw these short line segments to indicate what the derivative is at those points. You get a sense of, I guess you say, the solution space for that differential equation.

More Articles

View All
Electric forces | Forces at a distance | Middle school physics | Khan Academy
Have you ever taken a shirt out of a dryer and found a sock stuck to it? If you have, you might have noticed that once you pull the sock off, it was still attracted to the shirt, even when they weren’t touching. What is even happening here? Well, it turns…
Guided visualization to calm your mind
Welcome and thanks for taking out the time for yourself for what will hopefully be a nice inward journey. So just start off sitting upright, feet planted on the ground, if you’re ideally on some type of a firm chair. Start to soften your gaze. If your ey…
Can You Answer the 2016 Geography Bee's Winning Question? | National Geographic
[Applause] We started with 2.6 million students across the country. 54 made it to Washington DC, and now just 12-year-old Rishi Nir and 14-year-old Saketh Janna Lagata remain. Is it a trophy or a medal? Is it a trophy or metal? Uh, judges? A medal. It’s …
Surviving a Hostage Situation | No Man Left Behind
It’s hard to describe what was going on. There is total, not panic, but chaos. Pandemonium. I don’t know that anybody was ready for Anita to shoot me. I wasn’t. After the shot, it was a throbbing, burning pain, and I immediately became concerned about the…
Mean of sum and difference of random variables | Random variables | AP Statistics | Khan Academy
Let’s say that I have a random variable X, which is equal to the number of dogs that I see in a day. Random variable Y is equal to the number of cats that I see in a day. Let’s say I also know what the mean of each of these random variables are, the expec…
2019 Berkshire Hathaway Annual Meeting (Full Version)
Thank you, good morning and welcome to Berkshire Hathaway. For those of you who have come from out of state, welcome to Omaha. The city is delighted to have you here for this event. For those of you who came from outside of the country, welcome to the Un…