yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: forming a slope field | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

In drawing the slope field for the differential equation, the derivative of y with respect to x is equal to y minus 2x. I would place short line segments at select points on the xy-plane.

At the point (-1, 1), I would draw a short segment of slope blank. Like always, pause this video and see if you can fill out these three blanks.

When you're drawing the short segments to construct this slope field, you figure out their slope based on the differential equation. So, you're saying when x is equal to -1 and y is equal to 1, what is the derivative of y with respect to x? That's what this differential equation tells us.

So, for this first case, the derivative of y with respect to x is going to be equal to y, which is 1, minus 2 times x. x is -1, so this is going to be negative 2, but you're subtracting it, so it's going to be plus 2. Therefore, the derivative of y with respect to x at this point is going to be 3.

I would draw a short segment or a short segment of slope 3. We keep going. At the point (0, 2), let's see. When x is 0 and y is 2, the derivative of y with respect to x is going to be equal to y, which is 2, minus 2 times 0. Well, that's just going to be 2.

Now, last but not least, for this third point, the derivative of y with respect to x is going to be equal to y, which is 3, minus 2 times x. x here is 2. So, 2 times 2 is 4, and 3 minus 4 is equal to negative 1.

And that's all that problem asks us to do. Now, if we actually had to do it, it would look something like—I'll try to draw it real fast.

So, let's see. Let me make sure I go to make sure I have space for all of these points here. So, that's my coordinate axes, and I want to get the point (0, 2). That's (0, 2). Actually, I want to go all the way to (2, 3). So, let me get some space here. So, 1, 2, 3; and then 1, 2, 3.

Then we have to go to (-1, 1). We might go right over here. For this first one, this exercise isn't asking us to do it, but I'm just making it very clear how we would construct the slope field.

So, the point (-1, 1)—a short segment of slope 3. Slope 3 would look something like that. Then at the point (0, 2)—a slope of 2. (0, 2), the slope is going to be 2, which looks something like that.

Then at the point (2, 3)—at (2, 3), a short segment of slope negative 1. So, (2, 3), a segment of slope negative 1, would look something like that.

You would keep doing this at more and more points. If you had a computer to do it, that's what the computer would do, and you would draw these short line segments to indicate what the derivative is at those points. You get a sense of, I guess you say, the solution space for that differential equation.

More Articles

View All
What The Midterm Elections Will Mean For Investors | Meet Kevin
[Music] [Applause] [Music] What about Keystone Pipeline? Should Biden have kept that going? It would have been the fourth phase of it. We’ve got the other three. Do we really need it? Any changes expected? Yeah, I think it’s clear now that the market thi…
Charlie Munger: Why your first $100,000 will CHANGE YOUR LIFE
Getting your first 100,000 saved and invested will change your life. The quicker you can hit that milestone, the better. But this advice isn’t coming from me; it’s coming from legendary investor and billionaire Charlie Munger. Hearing what Munger had to s…
The Helicopter Speed Limit - Helicopter Physics Series - #7 - Smarter Every Day 51
Helicopters have a speed limit that has nothing to do with laws. Well, unless you count the laws of physics. Hey, it’s me, Destin. Welcome back to Smarter Every Day. The show where we do science. So today I’m gonna explain to you something pretty interes…
Why Robinhood Blocked Gamestop. (Full Explanation)
We made the decision, uh, in the morning to limit the buying of about 13 securities on our platform. So, to be clear, uh, customers could still sell those securities if they had positions in them, and they could also trade in the thousands of other securi…
The Art of Traveling Light Through Life | Minimalist Philosophy
As was the case with many philosophers of antiquity, Socrates led a frugal life. He had few possessions and even refused to wear shoes. Yet, he loved visiting the marketplace and went there often, just walking around and looking at stuff. So, a friend ask…
Reimagining Dinosaurs | National Geographic
Hello, um, thank you all, uh, so much for um watching this live stream. My name is Michael Greshko. I’m a science writer at National Geographic and the author of the October 2020 cover story, Reimagining Dinosaurs, uh, to talk with us about the latest adv…