yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

_-substitution: definite integrals | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

What we're going to do in this video is get some practice applying u-substitution to definite integrals. So let's say we have the integral. So we're going to go from x equals 1 to x equals 2, and the integral is (2x \times (x^2 + 1)^3 , dx).

So, I already told you that we're going to apply u-substitution, but it's interesting to be able to recognize when to use it. The key giveaway here is, well, I have this (x^2 + 1) business of 3rd power, but then I also have the derivative of (x^2 + 1) which is (2x) right over here.

So I could do the substitution. I could say (u) is equal to (x^2 + 1), in which case the derivative of (u) with respect to (x) is just (2x + 0) or just (2x). I could write that in differential form. A mathematical hand-wavy way of thinking about it is multiplying both sides by (dx), and so you get (du = 2x , dx).

Now, at least this part of the integral I can rewrite. So let me at least write this. This is going to be, I'll write the integral—we're going to think about the bounds in a second—so we have (u^3).

You do the same orange color: (u^3), that's this stuff right over here. And then (2x , dx), remember you could just view this as (2x \times (x^2 + 1)^3 \times dx). So (2x , dx), well (2x , dx) that is (du).

So that and that together, that is (du).

Now, an interesting question because this isn't an indefinite integral—we're not just trying to find the antiderivative, this is a definite integral—so what happens to our bounds of integration? Well, there's two ways that you can approach this.

You can change your bounds of integration because this one is (x = 1) to (x = 2), but now we're integrating with respect to (u). So one way, if you want to keep your bounds of integration—or if you want to keep this a definite integral, I guess you could say—you would change your bounds from (u =) something to (u =) something else.

So your bounds of integration, let's see, when (x = 1), what is (u)? Well, when (x = 1), you have (1^2 + 1), so you have (2): (u = 2) in that situation. When (x = 2), what is (u)? Well, you have (2^2) which is (4) plus (1) which is (5), so (u = 5).

And you won't typically see someone writing (u =) or (u = 5); it's often just from (2) to (5) because we're integrating with respect to (u). You assume it's (u = 2) to (u = 5).

So we could just rewrite this as being equal to the integral from (2) to (5) of (u^3 , du). But it's really important to realize why we changed our bounds. We are now integrating with respect to (u) and the way we did it is we used our substitution right over here.

What (x = 1), (u = 2); when (x = 2): (2^2 + 1) (u = 5). Then we can just evaluate this right over here. Let’s see: this is going to be equal to the antiderivative of (u^3) which is (\frac{u^4}{4}), and we're going to evaluate that at (5) and (2).

So this is going to be (\frac{5^4}{4} - \frac{2^4}{4}), and then we could simplify this if we like, but we've just evaluated this definite integral.

Now, another way to do it is to think about the— is to try to solve the indefinite integral in terms of (x) and use (u) substitution as an intermediate. So one way to think about this is to say, well, let's just try to evaluate what the indefinite integral of (2x \times (x^2 + 1)^3 , dx) is.

And then whatever this expression ends up being algebraically, I'm going to evaluate it at (x = 2) and at (x = 1). So then you use the (u) substitution right over here, and you would get this would simplify using the same substitution as the integral of (u^3 , du).

Once again, you're going to evaluate this whole thing from (x = 2) and then subtract from that it evaluated at (x = 1).

And so this is going to be equal to, well let's see, this is (\frac{u^4}{4}) and once again evaluating it at (x = 2) and then subtracting from that at (x = 1).

And then now we can just back substitute. We could say, "Hey look, (u = x^2 + 1)". So this is the same thing as (\frac{(x^2 + 1)^4}{4}) and we're now going to evaluate that at (x = 2) and (x = 1).

And you will notice that you'll get the exact same thing. When you put (x = 2) here, you get (2^2 + 1) which is (5) to the (4)th power over (4), that right over there. And then minus (1^2 + 1) is (2) to the (4)th power over (4), that right over there.

So, either way, you'll get the same result. You can either keep it a definite integral and then change your bounds of integration and express them in terms of (u). That's one way to do it. The other way is to try to evaluate the indefinite integral, use (u) substitution as an intermediary step, then back substitute back, and then evaluate at your bounds.

More Articles

View All
A Rare Look Into the Lives of North Koreans | Nat Geo Live
It’s fair to say that North Korea is one of the most isolated, least understood places on Earth. Part of the reason that it is so misunderstood, and nothing is known about it, is there have been very few photographs that have ever been taken there. (appla…
Pilots can influence the sale of a plane.
So the pilots can influence the decisions on the plank 50% of the time. Really? Yeah, why is that? Course they ask the pilots what they think of the manufacturer, the reliability, the capabilities. 50% of the time they have a big contribution. This is a …
15 Money Secrets They Don't Teach You In School
The school system is designed to keep people poor and mediocre. It was never designed so you could become rich and live a life full of prosperity. It was designed to raise employees that are obedient and never dream big. And if you want to change that pro…
He Spent His Career Studying a Frog. Then He Discovered Its True Identity. | Short Film Showcase
[Music] So, after all the different tree frogs, there is one group that really captivated my interest, and that was the leaf frogs. You can just imagine seeing one of those in the wild; it’s just incredible. You know, the great big eyes open, they’ve got …
15 Ways To DECLUTTER Your Life
When you were little, remember when your mum used to tell you to tidy your room? Yes, we’re going to remind you of that good advice your mom gave you, but we’re going to take it quite a bit further too. Hey, Aluxers! Watch this video right until the end,…
Building The World's Best Image Diffusion Model
I think we thought the product was going to be one way, and then we literally ripped it all up in a month and a half or so before release. We were sort of like lost in the jungle for a moment, like a bit of a panic. There’s a lot of unsolved problems basi…