yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Virtual ground


3m read
·Nov 11, 2024

I want to take a look at our two op-amp circuits and make an interesting observation about how these things are behaving. When they are working properly, when they're hooked up right, there's something these things do that is really helpful and makes life simple for us.

Let's let the gain of our op-amp be (10^3) or (10^6), really high, gained a million. We're going to let the output voltage here, (V_{out}), let's say 6 volts. And you remember what's not shown here in this circuit is the power supply going to both of these op-amps plus or minus. Let's say it's plus or minus 12 volts. Those power supplies are implicit; they're not shown in the diagram but we know they're there.

All right, now if (V_{out}) is 6 volts and (a) is (10^6), then what's (V_n)? (V_n) is the difference between these two voltages here. Let's call this the usual thing; we'll call this (V_{+}) and we'll call this (V_{-}). And we know that (V_n) equals (V_{+} - V_{-}).

Now, what the question is: what is (V_n) in terms of (V_{out})? Well, (V_n = \frac{V_{out}}{a}). If we fill in the values we had: it's 6 volts divided by (10^6) or 6 microvolts. So this is 6 microvolts between here and here. Okay, so with 6 volts here, there's 6 microvolts over here.

This is a really small voltage; in order for this op-amp to have an output voltage that stays between plus or minus 12 volts, this voltage over here has to be really small. It has to be down to the microvolts level. So, because I'm a practical engineer, I'm just going to say this is pretty much zero volts. If I say this is zero, that's pretty much the same thing as saying that (V_{+} \approx V_{-}).

So that's a little observation we're going to make right there. So in this circuit, when it’s working right, these two voltages are pretty much the same. So let's take this idea (V_{+} \approx V_{-}) and apply it to this circuit over here. Now this is our inverting configuration for an op-amp. So this is (V_{+}) and this is (V_{-}) in this circuit.

Let's do the same analysis that we did before. If this is (V_{out}) and if (V_{out}) is 6 volts, that means that (\frac{V_{+} - V_{-}}{10^6} = 6 \text{ microvolts}). That says that this is 6 microvolts in this direction. When we did this over here because the signs of the inputs are flipped, this was 6 microvolts this way.

So again because of the enormous gain of this amplifier, this is always going to be a tiny, tiny number. So heck, why not make it zero? If I treat this as zero, what it means is I'm going to go right in here and I'm going to change this to zero volts.

So let's make a couple more observations. Okay, right now it says right here (V_{+} = 0) because it's grounded. So what does that mean (V_{-}) is? Well, (V_{-}) is also zero. (V_{-}) is zero, so that point right there is at 0 volts.

Okay, so that's pretty cool. So that point is at 0 volts. Now, is it connected to ground? It's not connected to ground, but it's zero volts because of what this op-amp is doing for us. This op-amp is making sure by this feedback path that this node is always next to this node, and that means it's always zero.

There's a really cool word that we use for this, and the word is "virtual." What does the word virtual mean? Well, virtual means that something is not there, but it seems like it is. So, in this case, this node is not connected to ground, but it seems like it is. So this is referred to as a virtual ground.

These two ideas say the same thing: (V_{+} = V_{-}) is always the situation around the input to an op-amp when it's running properly. In the case particularly of this op-amp configuration, where the plus terminal is connected to ground, we say that the other terminal (V_{-}) is at a virtual ground or is a virtual ground.

In the next video, I'm going to go back and do this inverting configuration of the op-amp. I'm going to do the analysis again with this idea of a virtual ground and it's going to be really easy compared to doing all that algebra.

More Articles

View All
Stoicism Cured His Depression | A mini documentary
Some things are up to us, some things are not up to us. It’s amazing how simple the sentence sounds, right? But it’s so true. If you can live it, if you can accept it, you will have less stress in your life. In Jakarta, the capital of Indonesia, I spoke …
Ray Dalio and Elliot Choy on How to Find Your Passions
I think some people, uh, just maybe earlier in their career or earlier in life, they haven’t, they don’t know necessarily what they like; maybe they haven’t tried enough things or whatever it may be, and they’re still kind of searching for that passion. …
What To Focus On To Make $1 Million Dollars in 90 days | Grant Cardone
If you had 90 days, 90 days to make a million dollars, start with nothing. You started with nothing, and you can’t use your name, Kevin O’Leary. What would you focus on? Wow, well, that’s a tough one, Grant. Like, that’s a real tough one. Does it make se…
Creative algebra at work | Algebra 1 | Khan Academy
[Music] Hi everyone, Sal Khan here. I’ve always been drawn to creative things. I like to see change and new things in the world, and because of that, I’ve been drawn to careers where I can most apply my creativity, especially in an abstract sense. Algebra…
The Bull Market Of 2022 | Did We Just Hit Bottom?
What’s up guys, it’s Graham here. So, I had another video that was scheduled to post today, but with the current state of the market combined with the absolute annihilation of some of the largest companies in existence, I thought it would be more importan…
Building a Bench in the Arctic | Life Below Zero
Ah damn it, slip chain! I hate these small limbs! Like that, it happens with chainsaws. I gotta fix this up; the fun ain’t over yet. Okay, I got my poles. Time to get to work! What I want to do is get this bark off; then I’m gonna make a point and drive …