yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Virtual ground


3m read
·Nov 11, 2024

I want to take a look at our two op-amp circuits and make an interesting observation about how these things are behaving. When they are working properly, when they're hooked up right, there's something these things do that is really helpful and makes life simple for us.

Let's let the gain of our op-amp be (10^3) or (10^6), really high, gained a million. We're going to let the output voltage here, (V_{out}), let's say 6 volts. And you remember what's not shown here in this circuit is the power supply going to both of these op-amps plus or minus. Let's say it's plus or minus 12 volts. Those power supplies are implicit; they're not shown in the diagram but we know they're there.

All right, now if (V_{out}) is 6 volts and (a) is (10^6), then what's (V_n)? (V_n) is the difference between these two voltages here. Let's call this the usual thing; we'll call this (V_{+}) and we'll call this (V_{-}). And we know that (V_n) equals (V_{+} - V_{-}).

Now, what the question is: what is (V_n) in terms of (V_{out})? Well, (V_n = \frac{V_{out}}{a}). If we fill in the values we had: it's 6 volts divided by (10^6) or 6 microvolts. So this is 6 microvolts between here and here. Okay, so with 6 volts here, there's 6 microvolts over here.

This is a really small voltage; in order for this op-amp to have an output voltage that stays between plus or minus 12 volts, this voltage over here has to be really small. It has to be down to the microvolts level. So, because I'm a practical engineer, I'm just going to say this is pretty much zero volts. If I say this is zero, that's pretty much the same thing as saying that (V_{+} \approx V_{-}).

So that's a little observation we're going to make right there. So in this circuit, when it’s working right, these two voltages are pretty much the same. So let's take this idea (V_{+} \approx V_{-}) and apply it to this circuit over here. Now this is our inverting configuration for an op-amp. So this is (V_{+}) and this is (V_{-}) in this circuit.

Let's do the same analysis that we did before. If this is (V_{out}) and if (V_{out}) is 6 volts, that means that (\frac{V_{+} - V_{-}}{10^6} = 6 \text{ microvolts}). That says that this is 6 microvolts in this direction. When we did this over here because the signs of the inputs are flipped, this was 6 microvolts this way.

So again because of the enormous gain of this amplifier, this is always going to be a tiny, tiny number. So heck, why not make it zero? If I treat this as zero, what it means is I'm going to go right in here and I'm going to change this to zero volts.

So let's make a couple more observations. Okay, right now it says right here (V_{+} = 0) because it's grounded. So what does that mean (V_{-}) is? Well, (V_{-}) is also zero. (V_{-}) is zero, so that point right there is at 0 volts.

Okay, so that's pretty cool. So that point is at 0 volts. Now, is it connected to ground? It's not connected to ground, but it's zero volts because of what this op-amp is doing for us. This op-amp is making sure by this feedback path that this node is always next to this node, and that means it's always zero.

There's a really cool word that we use for this, and the word is "virtual." What does the word virtual mean? Well, virtual means that something is not there, but it seems like it is. So, in this case, this node is not connected to ground, but it seems like it is. So this is referred to as a virtual ground.

These two ideas say the same thing: (V_{+} = V_{-}) is always the situation around the input to an op-amp when it's running properly. In the case particularly of this op-amp configuration, where the plus terminal is connected to ground, we say that the other terminal (V_{-}) is at a virtual ground or is a virtual ground.

In the next video, I'm going to go back and do this inverting configuration of the op-amp. I'm going to do the analysis again with this idea of a virtual ground and it's going to be really easy compared to doing all that algebra.

More Articles

View All
Warren Buffett's Advice for the 2023 Economic Recession
Are we through the banking crisis at this point? Failures, the orders of banks may have lost a hell of a lot of money. The people who want the debt of the holding company, they may lose a lot of money. People can, they can lose a lot of money, uh, but the…
Energy flow in a marine ecosystem| Matter and Energy Flow| AP Environmental Science| Khan Academy
In this video, we’re going to take a deeper look at the various producers and consumers in an ecosystem. For the sake of diversity, no pun intended, we’re going to look at a marine ecosystem. Let’s say, an estuary. An estuary generally refers to a place w…
Voltage | Physics | Khan Academy
You probably know that power lines are very dangerous because they have very high voltage, right? So we should stay away from them. But then what about these birds? Why don’t they get electrocuted? To answer that question, we need to dig deeper into this …
Hydrodynamic Levitation!
Check this out! Hahaha, isn’t that awesome? That is hydrodynamic levitation. Check it out! This styrofoam ball is levitating on this stream of water, and it’s doing so in a very stable way. The set up is so stable you can play Frisbee through it, which is…
Samurai Sword - Linked | Explorer
NARRATOR: See this? This is a samurai, an elite Japanese warrior. And this is his sword, his samurai sword. Watch out! It’s super sharp. They’ve been around for over 1,000 years, as iconic to Japanese culture as cherry trees or Mt. Fuji. And thanks to, o…
Why Investors Can’t Fix Your Company – Dalton Caldwell and Michael Seibel
Hey, Dalton, you’re a pre-product market fit. Do you have five-year financial projections? That’s a great example of that. Financial projections may be a good idea later stage, but to even ask me if I had financial projections, I was like, what’s a financ…