yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in exponential models: with manipulation | High School Math | Khan Academy


2m read
·Nov 11, 2024

Ocean sunfishes are well known for rapidly gaining a lot of weight on a diet based on jellyfish. The relationship between the elapsed time ( t ) in days since an ocean sunfish is born and its mass ( m(t) ) in milligrams is modeled by the following function.

All right, complete the following sentence about the daily percent change in the mass of the sunfish: Every day there is a blank percent addition or removal from the mass of the sunfish.

So one thing that we can, we know from almost from the get-go, we know that the sunfish gains weight. We also see that as ( t ) grows, as ( t ) grows, the exponent here is going to grow. If you grow an exponent on something that is larger than one, ( m(t) ) is going to grow.

So I already know it's going to be about addition to the mass of the sunfish. But let's think about how much is added every day. Let's think about it. Well, let's see if we can rewrite this. This is—I'm going to just focus on the right-hand side of this expression, so ( 1.35^{t/6} + 5 ). That's the same thing as ( 1.35^5 \times 1.35^{t/6} ), and that's going to be equal to ( 1.35^5 \times 1.35 ).

I can separate this ( t/6 ) as ( \frac{1}{6} \times t ), so ( 1.35^{1/6} ) and then that being raised to the ( t ) power. So let's think about it. Every day as ( t ) increases by 1, now we can say that we're going to take the previous day's mass and multiply it by this common ratio.

The common ratio here isn't the way I've written it; it isn't ( 1.35 ), it's ( 1.35^{1/6} ). Let me draw a little table here to make that really, really clear. All of that algebraic manipulation I just did is just so I could simplify this.

So I have some common ratio to the ( t ) power. Based on how I've just written it, when ( t ) is zero, well, as ( t ) is zero, this is one. So then we just have our initial amount; our initial mass is going to be ( 1.35^5 ).

And then when ( t ) is equal to 1, when ( t ) is equal to 1, it's going to be our initial mass ( 1.35^5 ) times our common ratio times ( 1.35^{1/6} ). When ( t ) equals 2, we're just going to multiply what we had at ( t ) equals 1 and we're just going to multiply that times ( 1.35^{1/6} ) again.

And so every day—well let me get—every day we are growing. Every day we're growing by our common ratio ( 1.35^{1/6} ). Actually, let me get a calculator out; we're allowed to use calculators in this exercise.

So ( 1.35^{(1/6)} ) power is equal to approximately 1.051. So this is approximately ( 1.35 \times 1.051^t ).

Well, growing by a factor of 1.051 means that you're adding a little bit more than five percent. You're adding 0.51 every day of your mass. So that's—you're adding 5.1. And if you're rounding to the nearest percent, we would say there is a five percent addition to the mass of the sunfish every day.

More Articles

View All
For Syrian Refugees, He Is a Friendly Face in a Strange New Land | Short Film Showcase
I think that facing death changes people, which is what happened with me. Before this experience, I was a completely different person with a completely different dream. My last dream, which was to treat cancer, and right now my dream of changing the world…
Measure lengths to nearest 1/4
[Instructor] We are asked, what is the height of the sunflower? So pause this video and think about it. All right, so let’s see. The bottom of the sunflower is right aligned with the bottom of the ruler, so the ruler’s in the right place. And let’s see,…
Who has the Deathly-est Hallows? Harry Potter or Dr Strange --NERD WARS
Hey everybody! Welcome to Nerd Wars. I’m Fatih and I’m Jeff. We decided to do one topical: it’s Harry Potter versus Doctor Strange. I’ll be arguing Harry Potter, and I’ll be arguing Doctor Strange. Harry Potter is real! It’s real! They got a wand, and yo…
See How Ancient Past and Present Meet in This Coastal Town | National Geographic
(soft music) [Gabriel] This is Huanchaco. This is my hometown. Huanchaco is a small fishing village that is north of the city of Trujillo, and it’s a very rich place in archaeological sites. There has been a continuous occupation in this area for more th…
Gaining the Trust of the Gorillas | Dian Fossey: Secrets in the Mist
KELLY STEWART: Dian Fossey was definitely a pioneer. I do not think that word has been overused. Before that, nobody had done a long-term study of gorillas. Nobody had studied them month after month and year after year. IAN REDMOND: She wanted to be the …
The world's cheapest house? (Only $1.00)
What’s up you guys? It’s Graham here! So we did it! Big news here, we finally did it! Even with the stock market losing value, with crypto prices just going to what people are claiming, they can’t save up enough money to put a down payment in on real esta…