yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in exponential models: with manipulation | High School Math | Khan Academy


2m read
·Nov 11, 2024

Ocean sunfishes are well known for rapidly gaining a lot of weight on a diet based on jellyfish. The relationship between the elapsed time ( t ) in days since an ocean sunfish is born and its mass ( m(t) ) in milligrams is modeled by the following function.

All right, complete the following sentence about the daily percent change in the mass of the sunfish: Every day there is a blank percent addition or removal from the mass of the sunfish.

So one thing that we can, we know from almost from the get-go, we know that the sunfish gains weight. We also see that as ( t ) grows, as ( t ) grows, the exponent here is going to grow. If you grow an exponent on something that is larger than one, ( m(t) ) is going to grow.

So I already know it's going to be about addition to the mass of the sunfish. But let's think about how much is added every day. Let's think about it. Well, let's see if we can rewrite this. This is—I'm going to just focus on the right-hand side of this expression, so ( 1.35^{t/6} + 5 ). That's the same thing as ( 1.35^5 \times 1.35^{t/6} ), and that's going to be equal to ( 1.35^5 \times 1.35 ).

I can separate this ( t/6 ) as ( \frac{1}{6} \times t ), so ( 1.35^{1/6} ) and then that being raised to the ( t ) power. So let's think about it. Every day as ( t ) increases by 1, now we can say that we're going to take the previous day's mass and multiply it by this common ratio.

The common ratio here isn't the way I've written it; it isn't ( 1.35 ), it's ( 1.35^{1/6} ). Let me draw a little table here to make that really, really clear. All of that algebraic manipulation I just did is just so I could simplify this.

So I have some common ratio to the ( t ) power. Based on how I've just written it, when ( t ) is zero, well, as ( t ) is zero, this is one. So then we just have our initial amount; our initial mass is going to be ( 1.35^5 ).

And then when ( t ) is equal to 1, when ( t ) is equal to 1, it's going to be our initial mass ( 1.35^5 ) times our common ratio times ( 1.35^{1/6} ). When ( t ) equals 2, we're just going to multiply what we had at ( t ) equals 1 and we're just going to multiply that times ( 1.35^{1/6} ) again.

And so every day—well let me get—every day we are growing. Every day we're growing by our common ratio ( 1.35^{1/6} ). Actually, let me get a calculator out; we're allowed to use calculators in this exercise.

So ( 1.35^{(1/6)} ) power is equal to approximately 1.051. So this is approximately ( 1.35 \times 1.051^t ).

Well, growing by a factor of 1.051 means that you're adding a little bit more than five percent. You're adding 0.51 every day of your mass. So that's—you're adding 5.1. And if you're rounding to the nearest percent, we would say there is a five percent addition to the mass of the sunfish every day.

More Articles

View All
2015 AP Chemistry free response 2a (part 1 of 2) | Chemistry | Khan Academy
Ethine (C₂H₄) molar mass of 28.1 g per mole may be prepared by the dehydration of ethanol (C₂H₅OH) molar mass 46.1 g per mole using a solid catalyst. A setup for the lab synthesis is shown in the diagram above. The equation for the dehydration reaction is…
Surviving a Firefight | No Man Left Behind
One thing you have to understand about an SCES soldier, you know, during them six months of selection, what we do is knock them soldiers down physically, mentally, everything. And they get back up and they keep moving on, and you just keep getting over ea…
Why Luxury Watches Are More Expensive Than Regular Watches
Hello, a Luxor’s! In previous videos, we’ve spoken all about some of the most luxurious watch brands in the world and some of the most expensive timepieces they’ve produced. But what makes them so expensive? What drives up the cost of these wrist frosting…
Curvature of a cycloid
So let’s do another curvature example. This time, I’ll just take a two-dimensional curve, so it’ll have two different components: x of t and y of t. The specific components here will be t minus the sine of t, t minus sine of t, and then one minus cosine o…
Camp Khan Parent Webinar
Hi everyone, good afternoon or good evening, depending on where you’re joining us um in the country. My name is Roy, and I’m here to give you a quick overview of Camp Con, our new summer camp. Quick agenda here: we’re going to do intros real quickly, talk…
How I became a Millionaire in Real Estate by 26
What’s up you guys? It’s Graham here, so I just wanted to share my story and my background about how I became a millionaire by the age of 26. Now just as a quick background here, I started selling real estate as a real estate agent shortly after I turned …