yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in exponential models: with manipulation | High School Math | Khan Academy


2m read
·Nov 11, 2024

Ocean sunfishes are well known for rapidly gaining a lot of weight on a diet based on jellyfish. The relationship between the elapsed time ( t ) in days since an ocean sunfish is born and its mass ( m(t) ) in milligrams is modeled by the following function.

All right, complete the following sentence about the daily percent change in the mass of the sunfish: Every day there is a blank percent addition or removal from the mass of the sunfish.

So one thing that we can, we know from almost from the get-go, we know that the sunfish gains weight. We also see that as ( t ) grows, as ( t ) grows, the exponent here is going to grow. If you grow an exponent on something that is larger than one, ( m(t) ) is going to grow.

So I already know it's going to be about addition to the mass of the sunfish. But let's think about how much is added every day. Let's think about it. Well, let's see if we can rewrite this. This is—I'm going to just focus on the right-hand side of this expression, so ( 1.35^{t/6} + 5 ). That's the same thing as ( 1.35^5 \times 1.35^{t/6} ), and that's going to be equal to ( 1.35^5 \times 1.35 ).

I can separate this ( t/6 ) as ( \frac{1}{6} \times t ), so ( 1.35^{1/6} ) and then that being raised to the ( t ) power. So let's think about it. Every day as ( t ) increases by 1, now we can say that we're going to take the previous day's mass and multiply it by this common ratio.

The common ratio here isn't the way I've written it; it isn't ( 1.35 ), it's ( 1.35^{1/6} ). Let me draw a little table here to make that really, really clear. All of that algebraic manipulation I just did is just so I could simplify this.

So I have some common ratio to the ( t ) power. Based on how I've just written it, when ( t ) is zero, well, as ( t ) is zero, this is one. So then we just have our initial amount; our initial mass is going to be ( 1.35^5 ).

And then when ( t ) is equal to 1, when ( t ) is equal to 1, it's going to be our initial mass ( 1.35^5 ) times our common ratio times ( 1.35^{1/6} ). When ( t ) equals 2, we're just going to multiply what we had at ( t ) equals 1 and we're just going to multiply that times ( 1.35^{1/6} ) again.

And so every day—well let me get—every day we are growing. Every day we're growing by our common ratio ( 1.35^{1/6} ). Actually, let me get a calculator out; we're allowed to use calculators in this exercise.

So ( 1.35^{(1/6)} ) power is equal to approximately 1.051. So this is approximately ( 1.35 \times 1.051^t ).

Well, growing by a factor of 1.051 means that you're adding a little bit more than five percent. You're adding 0.51 every day of your mass. So that's—you're adding 5.1. And if you're rounding to the nearest percent, we would say there is a five percent addition to the mass of the sunfish every day.

More Articles

View All
Calculations using Avogadro's number (part 1) | Chemistry | Khan Academy
I have about 3.21 grams of sulfur powder over here. My question to you is, how many atoms of sulfur are there? At first, this question sounds ridiculous. I mean, there’s going to be lots and lots of atoms. How in the world are we going to count that? That…
The Ponzi Factor - Introduction
Quandt style LLC presents the Ponzi factor: The simple truth about investment profits by Tom Liu, narrated by Sean Pratt. All truth passes through three stages: first, it is ridiculed; second, it is violently opposed; third, it is accepted as self-eviden…
The Uncertainty Principle | Genius
[bell] Ernst, my good man. Ah. Two tins of the usual, professor? Indeed. And I would like you to meet my good friend, and thorn in my scientific side, Dr. Niels Bohr. Hello. An honor to meet you, sir. Ernst, are you familiar with Heisenberg’s uncertainty…
Going 50% Bitcoin
What’s up, Graham? It’s guys here. So get this: every six months, CNBC surveys 750 millionaires to find out how and where they’re investing their money. For the first time ever, they found a rather surprising trend among Millennials. Nearly half of them h…
Non-typical pay structures | Employment | Financial Literacy | Khan Academy
In this video, we’re going to think about all of the ways that someone can work or get paid or have employment. We’re not going to list out every occupation or how someone might do it, but the general categories. Now some of you might be saying, “Well, is…
BREAKING: THE NEXT STIMULUS CHECK CONFIRMED | ALL DETAILS REVEALED
What’s up you guys? It’s Graham here. So, it’s that time again. The next stimulus package is underway, and now that time has come because we’ve just gotten an inside look into the new stimulus draft that was just released yesterday. Now we could dive into…