yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in exponential models: with manipulation | High School Math | Khan Academy


2m read
·Nov 11, 2024

Ocean sunfishes are well known for rapidly gaining a lot of weight on a diet based on jellyfish. The relationship between the elapsed time ( t ) in days since an ocean sunfish is born and its mass ( m(t) ) in milligrams is modeled by the following function.

All right, complete the following sentence about the daily percent change in the mass of the sunfish: Every day there is a blank percent addition or removal from the mass of the sunfish.

So one thing that we can, we know from almost from the get-go, we know that the sunfish gains weight. We also see that as ( t ) grows, as ( t ) grows, the exponent here is going to grow. If you grow an exponent on something that is larger than one, ( m(t) ) is going to grow.

So I already know it's going to be about addition to the mass of the sunfish. But let's think about how much is added every day. Let's think about it. Well, let's see if we can rewrite this. This is—I'm going to just focus on the right-hand side of this expression, so ( 1.35^{t/6} + 5 ). That's the same thing as ( 1.35^5 \times 1.35^{t/6} ), and that's going to be equal to ( 1.35^5 \times 1.35 ).

I can separate this ( t/6 ) as ( \frac{1}{6} \times t ), so ( 1.35^{1/6} ) and then that being raised to the ( t ) power. So let's think about it. Every day as ( t ) increases by 1, now we can say that we're going to take the previous day's mass and multiply it by this common ratio.

The common ratio here isn't the way I've written it; it isn't ( 1.35 ), it's ( 1.35^{1/6} ). Let me draw a little table here to make that really, really clear. All of that algebraic manipulation I just did is just so I could simplify this.

So I have some common ratio to the ( t ) power. Based on how I've just written it, when ( t ) is zero, well, as ( t ) is zero, this is one. So then we just have our initial amount; our initial mass is going to be ( 1.35^5 ).

And then when ( t ) is equal to 1, when ( t ) is equal to 1, it's going to be our initial mass ( 1.35^5 ) times our common ratio times ( 1.35^{1/6} ). When ( t ) equals 2, we're just going to multiply what we had at ( t ) equals 1 and we're just going to multiply that times ( 1.35^{1/6} ) again.

And so every day—well let me get—every day we are growing. Every day we're growing by our common ratio ( 1.35^{1/6} ). Actually, let me get a calculator out; we're allowed to use calculators in this exercise.

So ( 1.35^{(1/6)} ) power is equal to approximately 1.051. So this is approximately ( 1.35 \times 1.051^t ).

Well, growing by a factor of 1.051 means that you're adding a little bit more than five percent. You're adding 0.51 every day of your mass. So that's—you're adding 5.1. And if you're rounding to the nearest percent, we would say there is a five percent addition to the mass of the sunfish every day.

More Articles

View All
2015 AP Calculus BC 2d | AP Calculus BC solved exams | AP Calculus BC | Khan Academy
Find the total distance traveled by the particle from time t equals zero to t equals one. Now let’s remember, they didn’t say find the total displacement; they said find the total distance traveled by the particle. So if something goes to the right by on…
The Trouble with Transporters
In Star Trek, the transporter moves you from one spot to another, saving on shuttle fuel (and special effects budgets). In-universe, it’s ‘the safest way to travel’. Yes, sometimes, two guys die horrible, mutilated deaths under rare circumstances… but tri…
How To Supercharge Your Execution Skill
The world belongs to those who act. If everyone would do what they say they would, we’d have flying cars by now. But we don’t. The average individual has very poor execution skills. They’re blocked by a lack of discipline, a mountain of procrastination, a…
Bullet Time with MinutePhysics - Smarter Every Day 69
Hey, it’s me, Destin. Welcome back to Smarter Every Day! You remember a few weeks ago I did a bullet-time video in my backyard with a bonfire? Well, this week it’s a little bit different! Check it out. This is a 20-camera setup. Got a software package tha…
Time Is But a Stubborn Illusion - Sneak Peek | Genius
What is time? A deceptively simple question, yet it is the key to understanding relativity. It is sort of the reason my hair is going gray. [laughter] When we describe motion, we do so as a function of time: 10 meters per second, 100 miles per hour. But t…
Parent Quick-Start Tips: For Kids Ages 12 and Under
Hi, I’m Lauren from Khan Academy, and today I’m going to give you an overview of how to set up accounts for yourself and your children on Khan Academy. We’ll also go over how you can find relevant content for your kids and view their progress. This video …