yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in exponential models: with manipulation | High School Math | Khan Academy


2m read
·Nov 11, 2024

Ocean sunfishes are well known for rapidly gaining a lot of weight on a diet based on jellyfish. The relationship between the elapsed time ( t ) in days since an ocean sunfish is born and its mass ( m(t) ) in milligrams is modeled by the following function.

All right, complete the following sentence about the daily percent change in the mass of the sunfish: Every day there is a blank percent addition or removal from the mass of the sunfish.

So one thing that we can, we know from almost from the get-go, we know that the sunfish gains weight. We also see that as ( t ) grows, as ( t ) grows, the exponent here is going to grow. If you grow an exponent on something that is larger than one, ( m(t) ) is going to grow.

So I already know it's going to be about addition to the mass of the sunfish. But let's think about how much is added every day. Let's think about it. Well, let's see if we can rewrite this. This is—I'm going to just focus on the right-hand side of this expression, so ( 1.35^{t/6} + 5 ). That's the same thing as ( 1.35^5 \times 1.35^{t/6} ), and that's going to be equal to ( 1.35^5 \times 1.35 ).

I can separate this ( t/6 ) as ( \frac{1}{6} \times t ), so ( 1.35^{1/6} ) and then that being raised to the ( t ) power. So let's think about it. Every day as ( t ) increases by 1, now we can say that we're going to take the previous day's mass and multiply it by this common ratio.

The common ratio here isn't the way I've written it; it isn't ( 1.35 ), it's ( 1.35^{1/6} ). Let me draw a little table here to make that really, really clear. All of that algebraic manipulation I just did is just so I could simplify this.

So I have some common ratio to the ( t ) power. Based on how I've just written it, when ( t ) is zero, well, as ( t ) is zero, this is one. So then we just have our initial amount; our initial mass is going to be ( 1.35^5 ).

And then when ( t ) is equal to 1, when ( t ) is equal to 1, it's going to be our initial mass ( 1.35^5 ) times our common ratio times ( 1.35^{1/6} ). When ( t ) equals 2, we're just going to multiply what we had at ( t ) equals 1 and we're just going to multiply that times ( 1.35^{1/6} ) again.

And so every day—well let me get—every day we are growing. Every day we're growing by our common ratio ( 1.35^{1/6} ). Actually, let me get a calculator out; we're allowed to use calculators in this exercise.

So ( 1.35^{(1/6)} ) power is equal to approximately 1.051. So this is approximately ( 1.35 \times 1.051^t ).

Well, growing by a factor of 1.051 means that you're adding a little bit more than five percent. You're adding 0.51 every day of your mass. So that's—you're adding 5.1. And if you're rounding to the nearest percent, we would say there is a five percent addition to the mass of the sunfish every day.

More Articles

View All
Amelia Earhart Part I: The Lady Vanishes | Podcast | Overheard at National Geographic
The pilot, winging his way above the earth at 200 miles an hour, talks by radio telephone to ground stations and to other planes in the air. He sits behind engines, the reliability of which, measured by yardsticks of the past, is all but unbelievable. I m…
See Potala Palace, the Iconic Heart of Tibetan Buddhism | National Geographic
The centerpiece of Tibet’s capital Lhasa is the imposing Potala Palace. At 12,000 feet above sea level, it’s the highest palace in the world. It’s also a major center for Buddhist spirituality. Potala refers to a sacred mountain in India, and for centurie…
Kenya’s Wildlife Warriors | Podcast | Overheard at National Geographic
I just spent the morning driving in a 4x4 through rolling grass savannas in Kenya’s world famous Masai Mara. Already we’ve seen a group of cheetahs napping under a large acacia tree and a pair of young male lions lolling in the grass. Eyeing a group of ze…
Creativity break: how is creativity in biology changing the world? | Khan Academy
[Music] I think it’s really exciting how biology and creativity have combined, particularly in the area of health and outcomes. How do we help people with blindness? How do we help people who are paraplegic? Where we can start to read the electrical acti…
How to sell a $14M private jet.
What kind of a budget is your client looking to be in? What’s the maximum range you’re trying to reach? What city pairs? So, I mean, it depends on, you know, how old of an airplane your client’s willing to purchase. If you wanted a Legacy 600, you could …
The Harsh Bottom of the World | Continent 7: Antarctica
I think it’s important for people to know about what’s happening in Antarctica, not only just that the science that goes on down there, but what that science is actually trying to tell us about the future of this planet. Most of the research is really foc…