yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in exponential models: with manipulation | High School Math | Khan Academy


2m read
·Nov 11, 2024

Ocean sunfishes are well known for rapidly gaining a lot of weight on a diet based on jellyfish. The relationship between the elapsed time ( t ) in days since an ocean sunfish is born and its mass ( m(t) ) in milligrams is modeled by the following function.

All right, complete the following sentence about the daily percent change in the mass of the sunfish: Every day there is a blank percent addition or removal from the mass of the sunfish.

So one thing that we can, we know from almost from the get-go, we know that the sunfish gains weight. We also see that as ( t ) grows, as ( t ) grows, the exponent here is going to grow. If you grow an exponent on something that is larger than one, ( m(t) ) is going to grow.

So I already know it's going to be about addition to the mass of the sunfish. But let's think about how much is added every day. Let's think about it. Well, let's see if we can rewrite this. This is—I'm going to just focus on the right-hand side of this expression, so ( 1.35^{t/6} + 5 ). That's the same thing as ( 1.35^5 \times 1.35^{t/6} ), and that's going to be equal to ( 1.35^5 \times 1.35 ).

I can separate this ( t/6 ) as ( \frac{1}{6} \times t ), so ( 1.35^{1/6} ) and then that being raised to the ( t ) power. So let's think about it. Every day as ( t ) increases by 1, now we can say that we're going to take the previous day's mass and multiply it by this common ratio.

The common ratio here isn't the way I've written it; it isn't ( 1.35 ), it's ( 1.35^{1/6} ). Let me draw a little table here to make that really, really clear. All of that algebraic manipulation I just did is just so I could simplify this.

So I have some common ratio to the ( t ) power. Based on how I've just written it, when ( t ) is zero, well, as ( t ) is zero, this is one. So then we just have our initial amount; our initial mass is going to be ( 1.35^5 ).

And then when ( t ) is equal to 1, when ( t ) is equal to 1, it's going to be our initial mass ( 1.35^5 ) times our common ratio times ( 1.35^{1/6} ). When ( t ) equals 2, we're just going to multiply what we had at ( t ) equals 1 and we're just going to multiply that times ( 1.35^{1/6} ) again.

And so every day—well let me get—every day we are growing. Every day we're growing by our common ratio ( 1.35^{1/6} ). Actually, let me get a calculator out; we're allowed to use calculators in this exercise.

So ( 1.35^{(1/6)} ) power is equal to approximately 1.051. So this is approximately ( 1.35 \times 1.051^t ).

Well, growing by a factor of 1.051 means that you're adding a little bit more than five percent. You're adding 0.51 every day of your mass. So that's—you're adding 5.1. And if you're rounding to the nearest percent, we would say there is a five percent addition to the mass of the sunfish every day.

More Articles

View All
Could Sport Fishing Cause Shark Attacks? | When Sharks Attack: Tropical Terror
If tiger sharks are showing up in the shallows in greater numbers, then it’s not because of deep blue. The reason for the attacks remains elusive, but while scouring the ocean for an explanation, experts come across something else that also ensnares large…
YC Fireside: Surbhi Sarna and Tracy Young - Founder of TigerEye and PlanGrid
Hi Tracy, welcome, and welcome to everybody in the audience as well. Tracy, you are such a legend more broadly and a legend in the female founder community. Certainly, I can’t think of anyone better to kick off Women’s History Month with. Thanks for havi…
Pablo Escobar Goes to War | Narco Wars
INTERVIEWER: You learned English in Colombia or in the United States or– Watching TV, man. INTERVIEWER: Watching TV? Watching TV, hiding all the time. My name is Sebastián Marroquín, formerly Juan Pablo Escobar. I am the son of Pablo Escobar. I grew up…
The Technological Singularity
Up until I was like 15, the way I found new music was through friends or songs that you hear in the background on my favorite TV shows or movies. This could be a really slow process, if you, like me, have a somewhat unconventional taste in music. So it wa…
Financial institutions and markets | Investments and retirement | Financial Literacy | Khan Academy
So let’s talk a little bit about financial institutions. There are many different types of financial institutions, but probably the most basic one that almost everyone encounters at some point in their life is a bank. At a bank, at the most basic level, t…
Everything Wrong With The NEW X1 Credit Card
What’s up guys? It’s Graham here. So, okay fine, I get it. You guys have been sending me so many comments, DMs, emails, and even more comments asking me to review the Smart X1 credit card. So, if this finally makes everyone happy, then sure, we’re going …