yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in exponential models: with manipulation | High School Math | Khan Academy


2m read
·Nov 11, 2024

Ocean sunfishes are well known for rapidly gaining a lot of weight on a diet based on jellyfish. The relationship between the elapsed time ( t ) in days since an ocean sunfish is born and its mass ( m(t) ) in milligrams is modeled by the following function.

All right, complete the following sentence about the daily percent change in the mass of the sunfish: Every day there is a blank percent addition or removal from the mass of the sunfish.

So one thing that we can, we know from almost from the get-go, we know that the sunfish gains weight. We also see that as ( t ) grows, as ( t ) grows, the exponent here is going to grow. If you grow an exponent on something that is larger than one, ( m(t) ) is going to grow.

So I already know it's going to be about addition to the mass of the sunfish. But let's think about how much is added every day. Let's think about it. Well, let's see if we can rewrite this. This is—I'm going to just focus on the right-hand side of this expression, so ( 1.35^{t/6} + 5 ). That's the same thing as ( 1.35^5 \times 1.35^{t/6} ), and that's going to be equal to ( 1.35^5 \times 1.35 ).

I can separate this ( t/6 ) as ( \frac{1}{6} \times t ), so ( 1.35^{1/6} ) and then that being raised to the ( t ) power. So let's think about it. Every day as ( t ) increases by 1, now we can say that we're going to take the previous day's mass and multiply it by this common ratio.

The common ratio here isn't the way I've written it; it isn't ( 1.35 ), it's ( 1.35^{1/6} ). Let me draw a little table here to make that really, really clear. All of that algebraic manipulation I just did is just so I could simplify this.

So I have some common ratio to the ( t ) power. Based on how I've just written it, when ( t ) is zero, well, as ( t ) is zero, this is one. So then we just have our initial amount; our initial mass is going to be ( 1.35^5 ).

And then when ( t ) is equal to 1, when ( t ) is equal to 1, it's going to be our initial mass ( 1.35^5 ) times our common ratio times ( 1.35^{1/6} ). When ( t ) equals 2, we're just going to multiply what we had at ( t ) equals 1 and we're just going to multiply that times ( 1.35^{1/6} ) again.

And so every day—well let me get—every day we are growing. Every day we're growing by our common ratio ( 1.35^{1/6} ). Actually, let me get a calculator out; we're allowed to use calculators in this exercise.

So ( 1.35^{(1/6)} ) power is equal to approximately 1.051. So this is approximately ( 1.35 \times 1.051^t ).

Well, growing by a factor of 1.051 means that you're adding a little bit more than five percent. You're adding 0.51 every day of your mass. So that's—you're adding 5.1. And if you're rounding to the nearest percent, we would say there is a five percent addition to the mass of the sunfish every day.

More Articles

View All
Worked example: coefficient in Taylor polynomial | Series | AP Calculus BC | Khan Academy
Given an f of x, and they say, what is the coefficient for the term containing x plus 2 to the 4th power in the Taylor polynomial centered at x equals negative 2? So, like always, take a see if you can take a stab at this video on your own before we work…
YouTube changed my life (Started exactly one year ago today)
So you usually want to make a video. I’ll plan it out a little bit ahead of time, and I’ll make it like a format of what I’m gonna say and in what order, so don’t miss any points. Put a video like this, I figured it’s probably just best I just make a spu…
Warren Buffett, Brian Moynihan Speak at Georgetown
(bell rings) [Announcer] Ladies and gentlemen, please welcome to the stage Lindsay Bruinsma, an MBA candidate at the McDonough School of Business, John J. DeGioia, President of Georgetown University, Brian T. Moynihan, CEO of Bank of America, and Warren …
The Banking Crisis Just Got Worse
US stocks have dropped sharply after new concerns over Germany’s Deutsche Bank. Investors continue to worry about the health of the global banking system. Banking is a nightmare; they can cause a lot of carnage when things go wrong. What’s up, guys? It’s…
Transforming exponential graphs | Mathematics III | High School Math | Khan Academy
We’re told the graph of y = 2^x is shown below. All right, which of the following is the graph of y = 2^(-x) - 5? So there’s two changes here: instead of 2^x, we have 2^(-x) and then we’re not leaving that alone; we then subtract five. So let’s take them…
Why Facts Don't Change Minds
After almost two years of this mess, I decided I needed a break and wanted to do some traveling. I booked all the tickets, got the paperwork done, and was all set to go. Then I noticed on the corner of the screen the plane I was about to fly, not once but…