yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in exponential models: with manipulation | High School Math | Khan Academy


2m read
·Nov 11, 2024

Ocean sunfishes are well known for rapidly gaining a lot of weight on a diet based on jellyfish. The relationship between the elapsed time ( t ) in days since an ocean sunfish is born and its mass ( m(t) ) in milligrams is modeled by the following function.

All right, complete the following sentence about the daily percent change in the mass of the sunfish: Every day there is a blank percent addition or removal from the mass of the sunfish.

So one thing that we can, we know from almost from the get-go, we know that the sunfish gains weight. We also see that as ( t ) grows, as ( t ) grows, the exponent here is going to grow. If you grow an exponent on something that is larger than one, ( m(t) ) is going to grow.

So I already know it's going to be about addition to the mass of the sunfish. But let's think about how much is added every day. Let's think about it. Well, let's see if we can rewrite this. This is—I'm going to just focus on the right-hand side of this expression, so ( 1.35^{t/6} + 5 ). That's the same thing as ( 1.35^5 \times 1.35^{t/6} ), and that's going to be equal to ( 1.35^5 \times 1.35 ).

I can separate this ( t/6 ) as ( \frac{1}{6} \times t ), so ( 1.35^{1/6} ) and then that being raised to the ( t ) power. So let's think about it. Every day as ( t ) increases by 1, now we can say that we're going to take the previous day's mass and multiply it by this common ratio.

The common ratio here isn't the way I've written it; it isn't ( 1.35 ), it's ( 1.35^{1/6} ). Let me draw a little table here to make that really, really clear. All of that algebraic manipulation I just did is just so I could simplify this.

So I have some common ratio to the ( t ) power. Based on how I've just written it, when ( t ) is zero, well, as ( t ) is zero, this is one. So then we just have our initial amount; our initial mass is going to be ( 1.35^5 ).

And then when ( t ) is equal to 1, when ( t ) is equal to 1, it's going to be our initial mass ( 1.35^5 ) times our common ratio times ( 1.35^{1/6} ). When ( t ) equals 2, we're just going to multiply what we had at ( t ) equals 1 and we're just going to multiply that times ( 1.35^{1/6} ) again.

And so every day—well let me get—every day we are growing. Every day we're growing by our common ratio ( 1.35^{1/6} ). Actually, let me get a calculator out; we're allowed to use calculators in this exercise.

So ( 1.35^{(1/6)} ) power is equal to approximately 1.051. So this is approximately ( 1.35 \times 1.051^t ).

Well, growing by a factor of 1.051 means that you're adding a little bit more than five percent. You're adding 0.51 every day of your mass. So that's—you're adding 5.1. And if you're rounding to the nearest percent, we would say there is a five percent addition to the mass of the sunfish every day.

More Articles

View All
Winners and losers from inflation and deflation | AP Macroeconomics | Khan Academy
What we’re going to do in this video is talk more about inflation and deflation, which we’ve talked about in other videos. But we’re going to talk about it in the context of who benefits and who gets hurt, especially in a situation where people are lendin…
NERD WARS: Altair & Ezio Vs. Daredevil
It was Jeff Ryman. This is Anna McLaughlin. We’re coming at you with another Nerd Wars. This one: Altair versus Daredevil. Oh my god, I am going to win so easy, as always! I will be taking the superhero Daredevil, and I’m gonna get gas. And I’m gonna be t…
The Smart Money is Making BIG CHANGES.
What stocks have the smart money been buying and/or selling? That’s what we’re going to be taking a look at in this video. A couple of weeks back, the 13F filings were released, which means we get to take a look behind the curtain and observe all the mark…
2017 AP Calculus AB/BC 4c | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Let’s now tackle part C, which tells us that for T is less than 10, an alternate model for the internal temperature of the potato at time T minutes is the function G that satisfies the differential equation: The derivative of G with respect to T is equal…
What Is The Greatest Honor?
Hey, Vsauce. Michael here. But where is here and how much does it weigh? That’s supposed to be me, huh? Imitation is a form of flattery. An honor. But what is the greatest honor possible? Let’s begin our journey by looking at challenges and achievements w…
Terms of Trade and the Gains from Trade | AP Macroeconomics | Khan Academy
Let’s imagine a very simple world, as we tend to do in economics, that has two countries that are each capable of producing either pants or shirts, or some combination. So, what we have here are the production possibility curves for each of those countri…