yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in exponential models: with manipulation | High School Math | Khan Academy


2m read
·Nov 11, 2024

Ocean sunfishes are well known for rapidly gaining a lot of weight on a diet based on jellyfish. The relationship between the elapsed time ( t ) in days since an ocean sunfish is born and its mass ( m(t) ) in milligrams is modeled by the following function.

All right, complete the following sentence about the daily percent change in the mass of the sunfish: Every day there is a blank percent addition or removal from the mass of the sunfish.

So one thing that we can, we know from almost from the get-go, we know that the sunfish gains weight. We also see that as ( t ) grows, as ( t ) grows, the exponent here is going to grow. If you grow an exponent on something that is larger than one, ( m(t) ) is going to grow.

So I already know it's going to be about addition to the mass of the sunfish. But let's think about how much is added every day. Let's think about it. Well, let's see if we can rewrite this. This is—I'm going to just focus on the right-hand side of this expression, so ( 1.35^{t/6} + 5 ). That's the same thing as ( 1.35^5 \times 1.35^{t/6} ), and that's going to be equal to ( 1.35^5 \times 1.35 ).

I can separate this ( t/6 ) as ( \frac{1}{6} \times t ), so ( 1.35^{1/6} ) and then that being raised to the ( t ) power. So let's think about it. Every day as ( t ) increases by 1, now we can say that we're going to take the previous day's mass and multiply it by this common ratio.

The common ratio here isn't the way I've written it; it isn't ( 1.35 ), it's ( 1.35^{1/6} ). Let me draw a little table here to make that really, really clear. All of that algebraic manipulation I just did is just so I could simplify this.

So I have some common ratio to the ( t ) power. Based on how I've just written it, when ( t ) is zero, well, as ( t ) is zero, this is one. So then we just have our initial amount; our initial mass is going to be ( 1.35^5 ).

And then when ( t ) is equal to 1, when ( t ) is equal to 1, it's going to be our initial mass ( 1.35^5 ) times our common ratio times ( 1.35^{1/6} ). When ( t ) equals 2, we're just going to multiply what we had at ( t ) equals 1 and we're just going to multiply that times ( 1.35^{1/6} ) again.

And so every day—well let me get—every day we are growing. Every day we're growing by our common ratio ( 1.35^{1/6} ). Actually, let me get a calculator out; we're allowed to use calculators in this exercise.

So ( 1.35^{(1/6)} ) power is equal to approximately 1.051. So this is approximately ( 1.35 \times 1.051^t ).

Well, growing by a factor of 1.051 means that you're adding a little bit more than five percent. You're adding 0.51 every day of your mass. So that's—you're adding 5.1. And if you're rounding to the nearest percent, we would say there is a five percent addition to the mass of the sunfish every day.

More Articles

View All
It’s much easier to build when you’re optimistic.
We all, you all, get to create this future. Yes, and there’s this thing where it’s cooler and edgier and more punk rock. Yes, to be like everything is, and that’s a good high horse to be on if you want to be cool. But if you’re actually building things an…
How much money you actually need..
Money. Our lives revolve around it. We all want it. We know we all want it. Most of it doesn’t even exist beyond the heavy-duty servers of some bank, and yet the pursuit continues for this elusive thing. Despite its presence in everyday life, despite the …
Join This Man on a Safari to Sculpt Animals in the Wild | Short Film Showcase
Africa is where I sport up; it’s a place that completely fills me with excitement. I enjoy the heat, the thorns, the smells. To me, it’s all hugely evocative. African wildlife is so diverse; 6:18 is such a movement, such a lot of character. All these thin…
There Is No End of Science
That’s an excellent example of what’s called a crucial test, which is sort of the pinnacle of what science is all about. If we do a test and it doesn’t agree with a particular theory that we have, that’s problematic. But that doesn’t mean that it refutes …
Gravitational forces | Forces at a distance | Middle school physics | Khan Academy
When you hear the word gravity, you probably just think of things falling, like an apple from a tree. But did you know it’s also the reason why your lamp is staying on the floor? That’s because gravity is so much more than things falling down. Gravitation…
The 'Everything Bubble' Just Got Bigger.
In the middle of last year, Seth Kimman gave an interview talking about the everything bubble. He spoke about how money was simply flooding into everything, from stocks to crypto to SPACs, and everything was getting seriously expensive. We’ve been in an e…