yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in exponential models: with manipulation | High School Math | Khan Academy


2m read
·Nov 11, 2024

Ocean sunfishes are well known for rapidly gaining a lot of weight on a diet based on jellyfish. The relationship between the elapsed time ( t ) in days since an ocean sunfish is born and its mass ( m(t) ) in milligrams is modeled by the following function.

All right, complete the following sentence about the daily percent change in the mass of the sunfish: Every day there is a blank percent addition or removal from the mass of the sunfish.

So one thing that we can, we know from almost from the get-go, we know that the sunfish gains weight. We also see that as ( t ) grows, as ( t ) grows, the exponent here is going to grow. If you grow an exponent on something that is larger than one, ( m(t) ) is going to grow.

So I already know it's going to be about addition to the mass of the sunfish. But let's think about how much is added every day. Let's think about it. Well, let's see if we can rewrite this. This is—I'm going to just focus on the right-hand side of this expression, so ( 1.35^{t/6} + 5 ). That's the same thing as ( 1.35^5 \times 1.35^{t/6} ), and that's going to be equal to ( 1.35^5 \times 1.35 ).

I can separate this ( t/6 ) as ( \frac{1}{6} \times t ), so ( 1.35^{1/6} ) and then that being raised to the ( t ) power. So let's think about it. Every day as ( t ) increases by 1, now we can say that we're going to take the previous day's mass and multiply it by this common ratio.

The common ratio here isn't the way I've written it; it isn't ( 1.35 ), it's ( 1.35^{1/6} ). Let me draw a little table here to make that really, really clear. All of that algebraic manipulation I just did is just so I could simplify this.

So I have some common ratio to the ( t ) power. Based on how I've just written it, when ( t ) is zero, well, as ( t ) is zero, this is one. So then we just have our initial amount; our initial mass is going to be ( 1.35^5 ).

And then when ( t ) is equal to 1, when ( t ) is equal to 1, it's going to be our initial mass ( 1.35^5 ) times our common ratio times ( 1.35^{1/6} ). When ( t ) equals 2, we're just going to multiply what we had at ( t ) equals 1 and we're just going to multiply that times ( 1.35^{1/6} ) again.

And so every day—well let me get—every day we are growing. Every day we're growing by our common ratio ( 1.35^{1/6} ). Actually, let me get a calculator out; we're allowed to use calculators in this exercise.

So ( 1.35^{(1/6)} ) power is equal to approximately 1.051. So this is approximately ( 1.35 \times 1.051^t ).

Well, growing by a factor of 1.051 means that you're adding a little bit more than five percent. You're adding 0.51 every day of your mass. So that's—you're adding 5.1. And if you're rounding to the nearest percent, we would say there is a five percent addition to the mass of the sunfish every day.

More Articles

View All
Khan Academy Welcomes Duck Duck Moose
Hi, I’m Sal Khan, founder of the Khan Academy, and I’m Caroline H. Flexer, founder of Duck Duck Moose. We have a very exciting announcement today. As you probably know, Khan Academy is a not-for-profit with a mission of a free, world-class education for …
Tax, discount and tip examples
We’re told that Casey buys a bracelet. She pays for the bracelet and pays 72 cents in sales tax. The sales tax rate is 6%. What is the original price of the bracelet before tax? So pause this video and see if you can figure this out. Well, let’s think a…
Elephant Encounter in 360 - Ep. 2 | The Okavango Experience
Travie giant elephants in front of you, interacting with you, connecting with you, smelling you, listening to you, looking at you, telling you to stop, telling you to go away, telling you to stay. I am fine with you. Those interactions are powerful to me.…
Enumerated and implied powers of the US federal government | Khan Academy
In this video, we’re going to focus on enumerated powers versus implied powers for the federal government. Enumerated just means powers that have been made explicit, that are clear, that have been enumerated, that have been listed someplace. While implied…
Preview Get Ready for Grade Level
Here’s an example of a Get Ready for Grade Level course. In this case, it’s Get Ready for Sixth Grade, and there are a couple of interesting things here. First of all, you can see that the course is broken down into units, like all of our courses are brok…
Why We Should NOT Look For Aliens - The Dark Forest
The Universe is incredibly big and seems full of potential for life, with billions of habitable planets. If an advanced civilization had the technology to travel between the stars, at just 0.1% of the speed of light, it could colonize our galaxy in roughl…