yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in exponential models: with manipulation | High School Math | Khan Academy


2m read
·Nov 11, 2024

Ocean sunfishes are well known for rapidly gaining a lot of weight on a diet based on jellyfish. The relationship between the elapsed time ( t ) in days since an ocean sunfish is born and its mass ( m(t) ) in milligrams is modeled by the following function.

All right, complete the following sentence about the daily percent change in the mass of the sunfish: Every day there is a blank percent addition or removal from the mass of the sunfish.

So one thing that we can, we know from almost from the get-go, we know that the sunfish gains weight. We also see that as ( t ) grows, as ( t ) grows, the exponent here is going to grow. If you grow an exponent on something that is larger than one, ( m(t) ) is going to grow.

So I already know it's going to be about addition to the mass of the sunfish. But let's think about how much is added every day. Let's think about it. Well, let's see if we can rewrite this. This is—I'm going to just focus on the right-hand side of this expression, so ( 1.35^{t/6} + 5 ). That's the same thing as ( 1.35^5 \times 1.35^{t/6} ), and that's going to be equal to ( 1.35^5 \times 1.35 ).

I can separate this ( t/6 ) as ( \frac{1}{6} \times t ), so ( 1.35^{1/6} ) and then that being raised to the ( t ) power. So let's think about it. Every day as ( t ) increases by 1, now we can say that we're going to take the previous day's mass and multiply it by this common ratio.

The common ratio here isn't the way I've written it; it isn't ( 1.35 ), it's ( 1.35^{1/6} ). Let me draw a little table here to make that really, really clear. All of that algebraic manipulation I just did is just so I could simplify this.

So I have some common ratio to the ( t ) power. Based on how I've just written it, when ( t ) is zero, well, as ( t ) is zero, this is one. So then we just have our initial amount; our initial mass is going to be ( 1.35^5 ).

And then when ( t ) is equal to 1, when ( t ) is equal to 1, it's going to be our initial mass ( 1.35^5 ) times our common ratio times ( 1.35^{1/6} ). When ( t ) equals 2, we're just going to multiply what we had at ( t ) equals 1 and we're just going to multiply that times ( 1.35^{1/6} ) again.

And so every day—well let me get—every day we are growing. Every day we're growing by our common ratio ( 1.35^{1/6} ). Actually, let me get a calculator out; we're allowed to use calculators in this exercise.

So ( 1.35^{(1/6)} ) power is equal to approximately 1.051. So this is approximately ( 1.35 \times 1.051^t ).

Well, growing by a factor of 1.051 means that you're adding a little bit more than five percent. You're adding 0.51 every day of your mass. So that's—you're adding 5.1. And if you're rounding to the nearest percent, we would say there is a five percent addition to the mass of the sunfish every day.

More Articles

View All
Cara Delevingne Pulls Herself Across a Canyon | Running Wild With Bear Grylls
[music playing] OK, you’re good, Cara. You know the bit I said about gravity doing the first bit? Yeah. That’s wrong. You’re just going to have to muscle it out most of the way. Oh, no. Hopefully, I’ll get across before I get scared. That’s what I’m hop…
Most People Don't Know How Bikes Work
Most people don’t know how bicycles actually work. [Off screen] Let’s try it again. So we modified this bike to prove it. This video was sponsored by KiwiCo. More about them at the end of the show. When you’re riding a bike and you want to turn left, …
The Reason I’m $1.8 Million In Debt
What’s up you guys? It’s Graham here. So, I really feel like this is something worth addressing given just how much misinformation there’s been surrounding a few of the recent videos that I made. Two of which really stand out the most. The first one is wh…
Building a Blind | Live Free or Die
Ah, right here! Fresh ones! Look! Oh yeah, cool! Yeah, there’s a whole bunch, actually. That’s not like one deer; that’s a bunch of deer. One deer is coming here all the time. Yeah, if this is where they’re hanging out, then we just need to get to a spot…
Aretha Franklin Meets Dinah Washington | Genius: Aretha
[blues piano] DINAH WASHINGTON (Singing): What a difference a day made. 24 little hours brought the sun and the flowers where there used to be rain! My yesterday was blue, dear. C.L. FRANKLIN: Come on down here and join the party. Come on. DINAH WASHIN…
Asking Billionaires How They Got Rich! (Houston)
Who am I here with today? Damon John. Kendra Scott, are you a business owner? I am. I’m one of only 20 female founders in the United States that have founded a billion-dollar brand. So you founded a billion-dollar company? A billion-dollar company, with a…