yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Mean (expected value) of a discrete random variable | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

  • [Instructor] So, I'm defining the random variable x as the number of workouts that I will do in a given week. Now right over here, this table describes the probability distribution for x. And as you can see, x can take on only a finite number of values: zero, one, two, three, or four. And so, because there's a finite number of values here, we would call this a discrete random variable.

And you can see that this is a valid probability distribution because the combined probability is one. .1 plus 0.15, plus 0.4, plus 0.25, plus 0.1 is one. And none of these are negative probabilities, which wouldn't have made sense. But what we care about in this video is the notion of an expected value of a discrete random variable, which we would just note this way.

And one way to think about it is, once we calculate the expected value of this variable, of this random variable, that in a given week, that would give you a sense of the expected number of workouts. This is also sometimes referred to as the mean of a random variable. This, right over here, is the Greek letter mu, which is often used to denote the mean.

So, this is the mean of the random variable x. But how do we actually compute it? To compute this, we essentially just take the weighted sum of the various outcomes, and we weight them by the probabilities. So, for example, this is going to be, the first outcome here is zero, and we'll weight it by its probability of 0.1.

So, it's zero times 0.1. Plus, the next outcome is one, and it'd be weighted by its probability of 0.15. So, plus one times 0.15. Plus, the next outcome is two and has a probability of 0.4, plus two times 0.4. Plus, the outcome three has a probability of 0.25, plus three times 0.25.

And then last but not least, we have the outcome four workouts in a week, that has a probability of 0.1, plus four times 0.1. Well, we can simplify this a little bit. Zero times anything is just zero. So, one times 0.15 is 0.15. Two times 0.4 is 0.8. Three times 0.25 is 0.75. And then four times 0.1 is 0.4.

And so, we just have to add up these numbers. So, we get 0.15, plus 0.8, plus 0.75, plus 0.4, and let's say 0.4, 0.75, 0.8. Let's add 'em all together. And so, let's see, five plus five is 10. And then this is two plus eight is 10, plus seven is 17, plus four is 21.

So, we get all of this is going to be equal to 2.1. So, one way to think about it is the expected value of x, the expected number of workouts for me in a week, given this probability distribution, is 2.1. Now you might be saying, wait, hold on a second.

All of the outcomes here are whole numbers. How can you have 2.1 workouts in a week? What is 0.1 of a workout? Well, this isn't saying that in a given week, you would expect me to work out exactly 2.1 times. But this is valuable because you could say, well, in 10 weeks, you would expect me to do roughly 21 workouts.

Sometimes I might do zero workouts, sometimes one, sometimes two, sometimes three, sometimes four. But in 100 weeks, you might expect me to do 210 workouts. So, even for a random variable that can only take on integer values, you can still have a non-integer expected value, and it is still useful.

More Articles

View All
Retire Early & Do These 15 Things
Retirement is not an age; it’s a number. When you hit your number, you can choose to retire. That number is when your investments generate at least 20 percent more than your expected cost of living. Yet, most people still look at retirement as an age mile…
Crafting a Hunting Tool | Live Free or Die
I’m gonna make this home for the night, and I’m gonna do a little bit of fire straightening. So I’m just warming the dart over the coals on this fire, and then try to kind of straighten it. Four days into his 80-mile journey, desert Nomad Tobias is suffe…
Should We Get Rid of Tipping? The Truth about Service Workers' Wages #Shorts
Race, gender, and overall appearance play a huge role in whether somebody gets a payday. So, some service workers think it might be a good idea to do away with tips altogether. What if the tip was already included in the price of the bill? Of course, pric…
Slavery in the British colonies | Period 2: 1607-1754 | AP US History | Khan Academy
This is a chart showing estimated population around the year 1750 in the British colonies in the New World. I’ve arranged this more or less from north to south, and you can see that as you go farther south, the percentage of the population that was enslav…
Snitches Get Stitches | Wicked Tuna
Oh no, called the Coast Guard! Yo, Coast Guard’s coming! You think that called the Coast Guard on you? Yeah, see that boat there? All my friends are on that boat. He set that out just for us. Safety is a big issue out here, and messing with people, you kn…
Elk Conservation in Yellowstone, LIVE! | Yellowstone Live
Yeah, it’s more like my hair. You look, you know people pay to have wind blow swings, right? Great! Hi, I’m Amber Ghoshal here with Arthur Middleton. He’s an animal ecologist and a NatGeo Explorer. We are in very windy West Yellowstone at Under Canvas. It…