yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How Can Trees Be Taller Than 10m?


3m read
·Nov 10, 2024

[Applause] Now, in a previous video, I showed you that you can only suck up a straw that's 10.3 m long. And that's even if you can create a perfect vacuum inside your mouth. If you haven't seen the original video, check it out.

But that raises an interesting question: how can these trees, which are 100 m high, get the water all the way from their roots up to the leaves? The argument, as you're alluding to, is that if you're sucking water out through a drinking straw, for example, you can only have a straw 33 ft long. The reason for this height limit is because the weight of the water in a column must be supported by the pressure difference between the top and the bottom.

So at the bottom, you're going to have atmospheric pressure, and the lowest pressure you can produce at the top would be a vacuum, that is, zero pressure. So atmospheric pressure can support a column of water that is only 10 m high. What's worse is if you were able to create a vacuum, the water would start boiling spontaneously. That's called cavitation, and, uh, obviously that can't be taking place within a tree.

So how are they doing it? Well, we started to develop some different theories. My guess, though, is people talk about this being a continuous water column. And what they, I think when you say that, you think this big, like empty pipe, right? That's what we're picturing. Uh, but I think what's more likely to be the truth is this big tube, which you're saying needs to be filled with water, is actually made up of cells.

The tree effectively has valves in it. So you don't have a column of water that is much higher than 33 feet tall. So, the water is pumped up by, um, osmotic pressure due to differences in concentration of sugars and so on. But each individual stage is just quite a small one. My guess is that it's probably more like a bucket brigade where, once, you know, here we’re at the end, there's sunlight coming in and it heats up the water.

And the water evaporates, and so the water goes off as water vapor, vaporizing off. So now this guy's like, my bucket's empty, I want some more water. And this is a cell; this is a cell here, but this one can give the water there because locally, like, it's surrounded by water, and a little bit of water will go there via osmotic pressure.

Now, another theory is that osmotic pressure at the base could actually push the water all the way up the tree. If the solute concentration is different enough between the roots and the water in the surrounding soil, then water would actually want to push into the roots in order to equalize the solute concentrations. That could create a positive pressure, which would push the water up the tree.

And this hypothesis led me to being challenged to blow water up a tube. Now, the water, as you can see, is Veritasium color. Three, two, one, go! Unbelievable! Stop, stop, stop! Yeah, yeah, nailed it! I hate you, D!

Now, my ability to blow water up that tube was impressive, but I don't really think that a tree would be able to get so much osmotic pressure at the roots that it could push the water up 100 m. Well, some people may be wondering why we haven't talked about capillary action yet. That's due to the adhesion between the water molecules and the walls of a tube. So, you can suck water up through, uh, perforated materials.

Now I'm not sure that the tubes inside a tree are small enough for this effect to have a significant impact, but it may well. I don't want to give you the complete answer yet. Uh, I'd like you guys to tell me what you think and maybe post a video response.

I'll tell you that I had a significant misconception that was stopping me from working this out, so if you can spot what that is, uh, do let me know. And let me give you a summary of the ideas we came up with:

One, that the tree does not contain a continuous water column.

Number two, osmotic pressure at the roots may be pushing the water up the tree.

Number three, osmotic pressure throughout the tree, uh, helps pull the water up.

And number four, capillary action.

So let me know what roles you think those different factors play in allowing a tree to draw the water up 100 m. And if you don't want to do that work, then subscribe to the channel and I'll post the answer in a week.

More Articles

View All
Total product, marginal product and average product | APⓇ Microeconomics | Khan Academy
In previous videos, we introduced the idea of a production function that takes in a bunch of inputs. Let’s call this input one, input two, input three, and that based on how much of these various inputs you have, your production function can give you your…
Limits of composite functions: external limit doesn't exist | AP Calculus | Khan Academy
So, over here I have two functions that have been visually or graphically defined. On the left here, I have the graph of g of x, and on the right here, I have the graph of h of x. What I want to do is figure out what is the limit of g of h of x as x appro…
Align | Vocabulary | Khan Academy
Hey there, wordsmiths! This video is about the word “align.” A line, this word has two definitions. The first is to support, ally, or associate with someone, and the second definition is to put things in a straight line. That’s its literal definition; it …
Biased and unbiased estimators from sampling distributions examples
Alejandro was curious if sample median was an unbiased estimator of population median. He placed ping-pong balls numbered from zero to 32 in a drum and mixed them well. Note that the median of the population is 16. He then took a random sample of five bal…
Resistance | Vocabulary | Khan Academy
What’s up, wordsmiths? This video is about the word “resistance.” It’s a noun; it means opposition, an effort to stop or fight something or someone. We could say the developers wanted to turn the community garden into a parking lot, but they were stopped…
Slow Motion Ice Bucket Challenge (Dog, Cat, Chicken, Kid) - Smarter Every Day
Hey, it’s me Destin and welcome back to Smarter Every Day. So I was challenged by Grant Thompson to do the Ice Bucket Challenge and I want to do a video that’s smart and teaches you something, that’s fun to watch and something that actually ends up giving…