yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How Can Trees Be Taller Than 10m?


3m read
·Nov 10, 2024

[Applause] Now, in a previous video, I showed you that you can only suck up a straw that's 10.3 m long. And that's even if you can create a perfect vacuum inside your mouth. If you haven't seen the original video, check it out.

But that raises an interesting question: how can these trees, which are 100 m high, get the water all the way from their roots up to the leaves? The argument, as you're alluding to, is that if you're sucking water out through a drinking straw, for example, you can only have a straw 33 ft long. The reason for this height limit is because the weight of the water in a column must be supported by the pressure difference between the top and the bottom.

So at the bottom, you're going to have atmospheric pressure, and the lowest pressure you can produce at the top would be a vacuum, that is, zero pressure. So atmospheric pressure can support a column of water that is only 10 m high. What's worse is if you were able to create a vacuum, the water would start boiling spontaneously. That's called cavitation, and, uh, obviously that can't be taking place within a tree.

So how are they doing it? Well, we started to develop some different theories. My guess, though, is people talk about this being a continuous water column. And what they, I think when you say that, you think this big, like empty pipe, right? That's what we're picturing. Uh, but I think what's more likely to be the truth is this big tube, which you're saying needs to be filled with water, is actually made up of cells.

The tree effectively has valves in it. So you don't have a column of water that is much higher than 33 feet tall. So, the water is pumped up by, um, osmotic pressure due to differences in concentration of sugars and so on. But each individual stage is just quite a small one. My guess is that it's probably more like a bucket brigade where, once, you know, here we’re at the end, there's sunlight coming in and it heats up the water.

And the water evaporates, and so the water goes off as water vapor, vaporizing off. So now this guy's like, my bucket's empty, I want some more water. And this is a cell; this is a cell here, but this one can give the water there because locally, like, it's surrounded by water, and a little bit of water will go there via osmotic pressure.

Now, another theory is that osmotic pressure at the base could actually push the water all the way up the tree. If the solute concentration is different enough between the roots and the water in the surrounding soil, then water would actually want to push into the roots in order to equalize the solute concentrations. That could create a positive pressure, which would push the water up the tree.

And this hypothesis led me to being challenged to blow water up a tube. Now, the water, as you can see, is Veritasium color. Three, two, one, go! Unbelievable! Stop, stop, stop! Yeah, yeah, nailed it! I hate you, D!

Now, my ability to blow water up that tube was impressive, but I don't really think that a tree would be able to get so much osmotic pressure at the roots that it could push the water up 100 m. Well, some people may be wondering why we haven't talked about capillary action yet. That's due to the adhesion between the water molecules and the walls of a tube. So, you can suck water up through, uh, perforated materials.

Now I'm not sure that the tubes inside a tree are small enough for this effect to have a significant impact, but it may well. I don't want to give you the complete answer yet. Uh, I'd like you guys to tell me what you think and maybe post a video response.

I'll tell you that I had a significant misconception that was stopping me from working this out, so if you can spot what that is, uh, do let me know. And let me give you a summary of the ideas we came up with:

One, that the tree does not contain a continuous water column.

Number two, osmotic pressure at the roots may be pushing the water up the tree.

Number three, osmotic pressure throughout the tree, uh, helps pull the water up.

And number four, capillary action.

So let me know what roles you think those different factors play in allowing a tree to draw the water up 100 m. And if you don't want to do that work, then subscribe to the channel and I'll post the answer in a week.

More Articles

View All
Sales and Marketing + How to Talk to Investors with Tyler Bosmeny and YC Partners (HtSaS 2014: 19)
Talking, okay great. Um, so okay great, thanks for having me. So my name is Tyler, I’m the CEO of Clever and what I want to talk today is about sales, and I have a little bit of insight into this. I graduated college, I actually studied math and statisti…
How Would You Envision a Space Colony? | Short Film Showcase
What if you lived in the 1500s and you knew there was a guy named Sir Jeffrey Bezos and Sir Elon Musk, and you knew they were building what they were going to call Mayfl flowers? These May flowers were going to be able to take people to new worlds. How wo…
Great White Shark Hunting Patterns | When Sharks Attack
NARRATOR: South Africa’s Western Cape is notoriously dangerous. Almost one in four of all fatal great white attacks happen here. In other parts of the world, the most dangerous time to enter the water is at dawn or dusk, the times when white sharks typica…
Introduction to price elasticity of demand | APⓇ Microeconomics | Khan Academy
We are now going to discuss price elasticity of demand, which sounds like a very fancy concept. But really, it’s a way for economists to sense how sensitive is quantity to change in prices. In this video, we’re going to denote it as a capital E: E, price …
The Day the Dinosaurs Died – Minute by Minute
One of the greatest illusions in life is continuity. 66 million years ago, the continuity of the dinosaurs had been going on for around 165 million years already, and it didn’t seem this would change anytime soon. The world was warm and pleasant, and most…
Why You Should NOT Buy A Home In 2022
What’s up, Graham? It’s guys here, and welp, it’s official. We are setting records, but unfortunately, it’s probably not for the best of reasons. It was just reported that housing affordability is nearing the worst it’s ever been in history, and as a resu…