yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Partial sums: term value from partial sum | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

We're told that the nth partial sum of the series from N equals one to infinity of a sub n is given by, and so the sum of the first n terms is N squared plus 1 over n plus 1. They want us to figure out what is the actual seventh term. And like always, pause this video and see if you can figure it out on your own before we work through it together.

Alright, so one way to think about it is a sub seven. Let's think about how that relates to different sums. So if we have a sub 1 plus a sub 2, I'll just go all the way: a sub 3 plus a sub 4 plus a sub 5 plus a sub 6 plus a sub 7.

So, if I were to sum all of these together, that this entire sum would be S sub seven. And if I wanted to figure out a sub seven, well, I could subtract from that. I could subtract out the sum of the first six terms, so I could subtract out S sub six.

So once again, what am I doing here? What is my strategy? I know the formula for the sum of the first n terms. I can use that to say, okay, I can figure out the sum of the first seven terms. That's going to be the sum of all of these. And then I can use that same formula to figure out the sum of the first six terms. The difference between the two, well, that's going to be our a sub seven.

So another way of saying what I just said is that a sub seven is going to be the sum of the first seven terms minus the sum of the first six terms. Some of the sixth for the sum of the first six terms. And if you are doing this problem on your own, you wouldn't have to write it out this way. I just wrote it out this way, hopefully making this statement a little bit more intuitive.

Well, what is this going to be? Well, S sub seven, the sum of the first seven terms, we just—whatever we see in, we replace it with a seven. So it's going to be seven squared plus one over seven plus one. And from that, we are going to subtract S sub six, the sum of the first six terms. Well, that's going to be six squared plus one over six plus one.

And from here we just have to do a little bit of arithmetic. So this is going to be, let's see, seven squared plus one. This is 49 plus 1, so that is 50 over 8. And this is 6 squared plus one; that is 36 plus one, that's 37 over seven.

So let's see, we want to find a common denominator between 8 & 7. That would be 56, so this is going to be something over 56, something over 56 minus something else over 56. Now, to go from 8 to 56, I multiply by 7, so I need to multiply the numerator by 7 as well. 50 times 7 is 350.

And then this second fraction, I multiply the denominator by 8 to get 256. So after multiplying 37 times 8, and see, 37 times 8 is going to be 240 plus 56, so that is 296.

And so this is going to be equal to—so I have a denominator of 56. 350 minus 296 is 54, so it's 54 over 56. And if we wanted to reduce this a little bit before we rewrite it, maybe in a simpler form, we're not really making a new value; it's, we're rewriting the same value.

This would be, we read it as 27 over 28. And let's see, is that about—yep, that's about as simplified as we can get. But there you go, that's what a sub 7 is. It's 27 over 28, the difference between the sum of the first 7 terms and the sum of the first 6 terms.

More Articles

View All
Homeroom with Sal & Chancellor Robert J. Jones - Thursday, September 3
Hi everyone! Welcome to our homeroom live stream. We have a very exciting conversation coming up. Sal here from Khan Academy. In case you all don’t know me, we’re gonna have a conversation with Chancellor Robert Jones from the University of Illinois at Ur…
The Assassin's Water Bottle
This water bottle allows you to carry two different liquids and dispense them from the same nozzle separately or together at your command. It’s a collaboration between myself and Steve Mold that you can pre-order now. It all started when Steve and I were…
15 Ways Rich People SHOW OFF
To flex is to show how much money you can afford to unnecessarily waste in order to draw attention, admiration, or envy of those you perceive as lesser than you. If you’ve been around rich people long enough, you realize that some of them still need valid…
Why Suffering is Beautiful | Emil Cioran’s Dark Philosophy
Romanian philosopher Emil Cioran observed that we live in a society that’s too afraid to confront the dark sides of existence. For example, we prefer to hide illness behind the thick walls of hospitals, and we avoid discussing death, as we see it as somet…
Warning: How to Avoid the BIGGEST Credit Card Mistake!!
What’s up, Graham? It’s you guys here, and yes, I know I’m making yet another video about credit cards, but this one is a little bit different, and it’s easily the most important conversation we can have about this topic. This is something so important t…
Why You'll Regret Buying Stocks In 2023
What’s up, Graham? It’s guys here, and 2023 is already off to an interesting start. For example, a Florida woman was recently pulled from a storm drain for the third time in two years. The National Guard general was fired for ordering troops to take his m…