yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Partial sums: term value from partial sum | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

We're told that the nth partial sum of the series from N equals one to infinity of a sub n is given by, and so the sum of the first n terms is N squared plus 1 over n plus 1. They want us to figure out what is the actual seventh term. And like always, pause this video and see if you can figure it out on your own before we work through it together.

Alright, so one way to think about it is a sub seven. Let's think about how that relates to different sums. So if we have a sub 1 plus a sub 2, I'll just go all the way: a sub 3 plus a sub 4 plus a sub 5 plus a sub 6 plus a sub 7.

So, if I were to sum all of these together, that this entire sum would be S sub seven. And if I wanted to figure out a sub seven, well, I could subtract from that. I could subtract out the sum of the first six terms, so I could subtract out S sub six.

So once again, what am I doing here? What is my strategy? I know the formula for the sum of the first n terms. I can use that to say, okay, I can figure out the sum of the first seven terms. That's going to be the sum of all of these. And then I can use that same formula to figure out the sum of the first six terms. The difference between the two, well, that's going to be our a sub seven.

So another way of saying what I just said is that a sub seven is going to be the sum of the first seven terms minus the sum of the first six terms. Some of the sixth for the sum of the first six terms. And if you are doing this problem on your own, you wouldn't have to write it out this way. I just wrote it out this way, hopefully making this statement a little bit more intuitive.

Well, what is this going to be? Well, S sub seven, the sum of the first seven terms, we just—whatever we see in, we replace it with a seven. So it's going to be seven squared plus one over seven plus one. And from that, we are going to subtract S sub six, the sum of the first six terms. Well, that's going to be six squared plus one over six plus one.

And from here we just have to do a little bit of arithmetic. So this is going to be, let's see, seven squared plus one. This is 49 plus 1, so that is 50 over 8. And this is 6 squared plus one; that is 36 plus one, that's 37 over seven.

So let's see, we want to find a common denominator between 8 & 7. That would be 56, so this is going to be something over 56, something over 56 minus something else over 56. Now, to go from 8 to 56, I multiply by 7, so I need to multiply the numerator by 7 as well. 50 times 7 is 350.

And then this second fraction, I multiply the denominator by 8 to get 256. So after multiplying 37 times 8, and see, 37 times 8 is going to be 240 plus 56, so that is 296.

And so this is going to be equal to—so I have a denominator of 56. 350 minus 296 is 54, so it's 54 over 56. And if we wanted to reduce this a little bit before we rewrite it, maybe in a simpler form, we're not really making a new value; it's, we're rewriting the same value.

This would be, we read it as 27 over 28. And let's see, is that about—yep, that's about as simplified as we can get. But there you go, that's what a sub 7 is. It's 27 over 28, the difference between the sum of the first 7 terms and the sum of the first 6 terms.

More Articles

View All
The Origins of Disgust
Being impressed by the cognitive abilities of a chimpanzee isn’t just good for them; it is good for us, because it helps us learn about our own evolutionary history. Comparing the psychology of humans to the psychology of other primates is a great way to …
2015 AP Physics 1 free response 5
The figure above shows a string with one end attached to an oscillator and the other end attached to a block. There’s our block. The string passes over a massless pulley that turns with negligible friction. There’s our massless pulley that turns with negl…
Golf Course Camping | Dirty Rotten Survival
As the boy’s head deeper into suburbia, Johnny needs to find a legal place to make camp before it gets too late. What is this? We think it is… it’s a golf course. What’s your stay here? Obviously, this woods is owned by the golf course. “Look, a fire! Ge…
Kevin O'Leary Visits Longines Boutique | Teddy Baldassarre
[Music] Every time I go out shopping with Teddy, I end up with another bad influence. It’s very bad. Interesting! I’m buying it right here. That’s how her he is. Oh, sorry Howard, never mind! You got the aviation baby. What should you do? [Music] Mr. Wo…
Science and Comedy - Perfect Together | StarTalk
Star Talk would not be Star Talk were it not for the tandem comedic elements that we weave into the science that we are otherwise conveying. What you will notice from Seth McFarlane, if you only catch the highlights of his comedic life, you may only have …
Jupiter 101 | National Geographic
(ambient music) [Narrator] Born from primordial stardust, 4.5 billion years ago, Jupiter was the solar system’s first planet. And much like its namesake, the king of the ancient Roman gods, Jupiter was destined for greatness. Jupiter is the fifth planet…