yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example identifying the center of dilation


2m read
·Nov 11, 2024

We are told the triangle N prime is the image of triangle N under a dilation. So this is N prime in this red color, and then N is the original; N is in this blue color. What is the center of dilation? And they give us some choices here: choice A, B, C, or D is the center of dilation.

So pause this video and see if you can figure it out on your own. There are a couple of ways to think about it. One way I like to just first think about what is the scale factor here.

So in our original N, we have this side here; it has a length of two. Once we dilated it by and used that scale factor, that corresponding side has a length of four. So we went from two to four. We can figure out our scale factor: the scale factor is equal to two. Two times two is equal to four.

Now, what about our center of dilation? One way to think about it is to pick two corresponding points. Let's say we were to pick this point and this point. The image, the corresponding point on N prime, is going to be the scale factor as far away from our center of dilation as the original point.

In this example, we know the scale factor is 2, so this is going to be twice as far from our center of dilation as the corresponding point. Well, you can immediately see it’s going to be in the same direction. So actually, if you just draw a line connecting these two, there’s only one choice that sits on that line, and that is choice D right over here as being the center of dilation.

You can also verify that. Notice this first point on the original triangle: its change in x is 2, and its change in y is 3. To go from point D to point 2, that point, and then if you want to go from point D to its image, well now you’ve got to go twice as far. Your change in x is 4, and your change in y is 6.

You could use the Pythagorean theorem to calculate this distance and then the longer distance. But what you see is that the corresponding point is now twice as far from your center of dilation.

So there are a couple of ways to think about it. One, if you connect corresponding points, your center of dilation is going to be on a line that connects those two points, and that the image should be the scale factor as far away from the center of dilation. In this case, it should be twice as far from the center of dilation as the point that it is the image of.

More Articles

View All
The Cleverest Productivity Hack | Productivity Hacks for Students
This is a good idea. So, I used to buy this gum from the grocery store, and it was just like regular Wrigley’s Extra or whatever. But it was my study gum, so I only studied it when I chewed it, and I only chewed it when I was about to study. It was like m…
Most Important Lifestyle Habits Of Successful Founders
Let’s examine the facts. Yes, fact, fact, fact, fact, great, you’re fine. Yes, however, sometimes we look at the facts, and you’re not fine. [Music] This is Michael Seibel with Dalton Caldwell. In our last video, we talked about the setbacks that make fou…
TIL: Almost 40 Percent of New Yorkers Are Immigrants | Today I Learned
So get this, there’s more than 3.2 million people in New York City that were born outside of the United States. Oh, that makes New York City, by a wide margin, the city with the most foreign-born people of any other city in the world. I’m Jar Thorp. I’m …
SUPER RARE $34,000 Mont Blanc Will DOUBLE in Value | Kevin O'Leary |
[Music] From Germany, just send them straight out the door. Okay, thanks a lot, let’s go upstairs. Welcome to Miami. [Music] So, just coming from—well, we have the head of—we have the head of VP of retail, and I think one of the marketing people are brin…
How To Survive Quicksand | Primal Survivor
[mud squishing] [groaning] I’ve been watching out so closely for predators that I run straight into something else life threatening: quicksand. Actually, this is a little bit more serious than I thought. [sputters] What makes this dangerous is, if you can…
Change in period and frequency from change in angular velocity: Worked examples | Khan Academy
We’re told that a large tire spins with angular velocity (4 \Omega). A smaller tire spins with half the angular velocity. I’m assuming half the angular velocity of the large tire. How does the period (T{\text{large}}) of the large tire compare with the pe…