yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example identifying the center of dilation


2m read
·Nov 11, 2024

We are told the triangle N prime is the image of triangle N under a dilation. So this is N prime in this red color, and then N is the original; N is in this blue color. What is the center of dilation? And they give us some choices here: choice A, B, C, or D is the center of dilation.

So pause this video and see if you can figure it out on your own. There are a couple of ways to think about it. One way I like to just first think about what is the scale factor here.

So in our original N, we have this side here; it has a length of two. Once we dilated it by and used that scale factor, that corresponding side has a length of four. So we went from two to four. We can figure out our scale factor: the scale factor is equal to two. Two times two is equal to four.

Now, what about our center of dilation? One way to think about it is to pick two corresponding points. Let's say we were to pick this point and this point. The image, the corresponding point on N prime, is going to be the scale factor as far away from our center of dilation as the original point.

In this example, we know the scale factor is 2, so this is going to be twice as far from our center of dilation as the corresponding point. Well, you can immediately see it’s going to be in the same direction. So actually, if you just draw a line connecting these two, there’s only one choice that sits on that line, and that is choice D right over here as being the center of dilation.

You can also verify that. Notice this first point on the original triangle: its change in x is 2, and its change in y is 3. To go from point D to point 2, that point, and then if you want to go from point D to its image, well now you’ve got to go twice as far. Your change in x is 4, and your change in y is 6.

You could use the Pythagorean theorem to calculate this distance and then the longer distance. But what you see is that the corresponding point is now twice as far from your center of dilation.

So there are a couple of ways to think about it. One, if you connect corresponding points, your center of dilation is going to be on a line that connects those two points, and that the image should be the scale factor as far away from the center of dilation. In this case, it should be twice as far from the center of dilation as the point that it is the image of.

More Articles

View All
The BIGGEST PROBLEM with renting your home on Airbnb...
What’s up you guys, it’s Graham here. So here’s a very common scenario that I see happening a lot, and a very stark warning for anyone out there who wants to rent their property on Airbnb. The situation usually goes a little bit something like this: an i…
15 Things You Envy In Other People
Nothing says I have no confidence in myself more than envying other people and being obvious about it. They seem to have it all while you’re here, stuck yet again. Well, today we’re talking about 15 things you envy in other people, so you can start doing …
Kirchhoff's current law | Circuit analysis | Electrical engineering | Khan Academy
Up to now, we’ve talked about, uh, resistors, capacitors, and other components, and we’ve connected them up and learned about OHS law for resistors. We also learned some things about series resistors, like we show here the idea of Kirchhoff’s laws. These …
Neo-Confucianism and Zhu Xi | World History | Khan Academy
In previous videos, we’ve talked about some of the major schools of thought that emerged at the end of the Joe Dynasty, especially as we start to enter the Warring States period. The famous hundred schools of thought, and most prominent amongst them is Co…
Philosophies That Shaped Millions
Know how it goes: one day we’re born, one day we die. Everything that happens in between we know and understand, but everything that happened before and will happen after we know nothing about. As a result, it’s really difficult to say what exactly the me…
How to Get Rich Investing in Things You LOVE | Ask Mr. Wonderful Shark Tank's Kevin O'Leary
The question I’m always getting is: what about living? What about spending on things that you love? What about clothes? What about fashion? Do I have to just go Spartan? I can’t buy any of that stuff? Hi, Mr. Wonderful here, and welcome to another episod…