yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Example identifying the center of dilation


2m read
·Nov 11, 2024

We are told the triangle N prime is the image of triangle N under a dilation. So this is N prime in this red color, and then N is the original; N is in this blue color. What is the center of dilation? And they give us some choices here: choice A, B, C, or D is the center of dilation.

So pause this video and see if you can figure it out on your own. There are a couple of ways to think about it. One way I like to just first think about what is the scale factor here.

So in our original N, we have this side here; it has a length of two. Once we dilated it by and used that scale factor, that corresponding side has a length of four. So we went from two to four. We can figure out our scale factor: the scale factor is equal to two. Two times two is equal to four.

Now, what about our center of dilation? One way to think about it is to pick two corresponding points. Let's say we were to pick this point and this point. The image, the corresponding point on N prime, is going to be the scale factor as far away from our center of dilation as the original point.

In this example, we know the scale factor is 2, so this is going to be twice as far from our center of dilation as the corresponding point. Well, you can immediately see it’s going to be in the same direction. So actually, if you just draw a line connecting these two, there’s only one choice that sits on that line, and that is choice D right over here as being the center of dilation.

You can also verify that. Notice this first point on the original triangle: its change in x is 2, and its change in y is 3. To go from point D to point 2, that point, and then if you want to go from point D to its image, well now you’ve got to go twice as far. Your change in x is 4, and your change in y is 6.

You could use the Pythagorean theorem to calculate this distance and then the longer distance. But what you see is that the corresponding point is now twice as far from your center of dilation.

So there are a couple of ways to think about it. One, if you connect corresponding points, your center of dilation is going to be on a line that connects those two points, and that the image should be the scale factor as far away from the center of dilation. In this case, it should be twice as far from the center of dilation as the point that it is the image of.

More Articles

View All
Ron Howard and Brian Grazer Talk 'Genius' | National Geographic
I’m Ron. I’m Brian, and we’re here to talk to you about National Geographic’s first scripted show on genius. We’re focusing on Albert Einstein: 10 episodes that encompass his entire life. We, as contemporary people in this contemporary civilization that …
Algorithms are Destroying Society
In 2013, Eric Loomis was pulled over by the police for driving a car that had been used in a shooting—a shooting, mind you, that he wasn’t involved in at all. After getting arrested and taken to court, he pleaded guilty to attempting to flee an officer an…
Flow of energy and matter through ecosystems | High school biology | Khan Academy
Let’s think a little bit about how energy flows and how matter is recycled in an ecosystem. So, the whole time that we go through this video, think about these two ideas. And then, even after watching this video, look at ecosystems around yourself, even o…
Three ways to end a sentence | Punctuation | Khan Academy
Hello Garans and hello Paige, hi David. So today we’re going to talk about the three different ways to end a sentence. This is what we call a terminal punctuation of English. Um, Paige, what are those three ways? So the first is a period, okay? And then,…
The upcoming economic crisis? | Stagflation explained
There is a really ugly word that is beginning to be thrown around for the first time in nearly 50 years. The last time the US economy experienced the devastating impacts of this word was way back in the 1970s, a period of time when inflation had a stagger…
Robinhood just sent me this..
What’s up, guys? It’s Graham here. So, as I’m sure you all know by now, reporting on Robinhood is like this guilty pleasure of mine, and I can’t wait to share much enjoyment following all the drama and pricing battles between stock brokerages. It’s basica…