yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: slope field from equation | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Which slope field is generated by the differential equation? The derivative of y with respect to x is equal to x minus y. And like always, pause this video and see if you can figure it out on your own.

Well, the easiest way to think about a slope field is if I was, if I needed to plot this slope field by hand, I would sample a bunch of x and y points, and then I would figure out what the derivative would have to be at that point.

What we can do here, since they've already drawn some candidate slope fields for us, is figure out what we think the slope field should be at some points and see which of these diagrams, these graphs, or these slope fields actually show that.

So, let me make a little table here. I'm going to have x, y, and then the derivative of y with respect to x. We can do it at a bunch of values. So let's think about it.

Let's think about when we're at this point right over here, when x is 2 and y is 2. When x is 2 and y is 2, the derivative of y with respect to x is going to be 2 minus 2; it's going to be equal to zero. Just with that, let's see here. This slope on this slope field does not look like it's zero; this looks like it's negative 1.

So already, I could rule this one out. This slope right over here looks like it's positive 1, so I’ll rule that out; it's definitely not 0. This slope also looks like positive 1, so I can rule that one out. This slope at (2, 2) actually does look like 0, so I'm liking this one right over here.

This slope at (2, 2) looks larger than 1, so I could rule that out. It was that straightforward to deduce that if any of these are going to be the accurate slope field, it’s this one. But just for kicks, we could keep going to verify that this is indeed the slope field.

So let's think about what happens when x is equal to 1. Whenever x is equal to y, you're going to get the derivative equaling 0. And you see that here; when you're at (4, 4), derivative equals 0. When it's (6, 6), derivative equals 0. At (-2, -2), derivative equals 0. So that feels good that this is the right slope field.

Then we could pick other arbitrary points. Let's say when x is 4, y is 2. Then the derivative here should be 4 minus 2, which is going to be 2. So when x is 4, y is 2, we do indeed see that the slope field is indicating a slope that looks like 2 right over here.

If it was the other way around, when x is, let’s say, x is -4 and y is -2, so (-4, -2), well, -4 minus -2 is going to be -2. And you can see that right over here.

(-4, -2) you can see the slope right over here. It's a little harder to see, looks like -2. So once again, in using even just this (2, 2) coordinates, we were able to deduce that this was the choice, but it just continues to confirm our original answer.

More Articles

View All
Explained: Beaker Ball Balance Problem
You have made your prediction, and now it is time to see what happens when I release the balance. Ready? In three, two, one. The balance tips towards the right, towards the hanging, heavier ball. But why does this happen? Well, the best way I can think o…
Gaining the Trust of the Gorillas | Dian Fossey: Secrets in the Mist
KELLY STEWART: Dian Fossey was definitely a pioneer. I do not think that word has been overused. Before that, nobody had done a long-term study of gorillas. Nobody had studied them month after month and year after year. IAN REDMOND: She wanted to be the …
A Robot That Walks, Flies, Skateboards, Slacklines
This is a robot that walks, flies, skateboards, and slacklines. But why? A portion of this video was sponsored by Bluehost. More about them at the end of the show. There are lots of bipedal robots out there, and drones are ubiquitous. But until now, no on…
Michael Burry's $1.6B Bet On A Stock Market Crash?
Michael Barry just revealed what mainstream media is calling a massive bet against the stock market, but in reality, there’s a bit more to it than that. Barry, who has been radio silenced and is deleting his Twitter account, earlier this year has just rel…
Stop Wanting, Start Accepting | The Philosophy of Marcus Aurelius
Although he never considered himself a philosopher, Marcus Aurelius’ writings have become one of the most significant ancient Stoic scriptures. His ‘Meditations’ contain a series of notes to himself based on Stoic ideas, one of which is embracing fate and…
The First Monotheistic Pharaoh | The Story of God
Amid the remains of dozens of pharaohs, Egyptologist Salma Ikram is going to help me find one whose name is Akhenaten. There he is! Yep, he thought that there were too many gods and not enough focus on him. There will need to be an important god whom onl…