yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: slope field from equation | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Which slope field is generated by the differential equation? The derivative of y with respect to x is equal to x minus y. And like always, pause this video and see if you can figure it out on your own.

Well, the easiest way to think about a slope field is if I was, if I needed to plot this slope field by hand, I would sample a bunch of x and y points, and then I would figure out what the derivative would have to be at that point.

What we can do here, since they've already drawn some candidate slope fields for us, is figure out what we think the slope field should be at some points and see which of these diagrams, these graphs, or these slope fields actually show that.

So, let me make a little table here. I'm going to have x, y, and then the derivative of y with respect to x. We can do it at a bunch of values. So let's think about it.

Let's think about when we're at this point right over here, when x is 2 and y is 2. When x is 2 and y is 2, the derivative of y with respect to x is going to be 2 minus 2; it's going to be equal to zero. Just with that, let's see here. This slope on this slope field does not look like it's zero; this looks like it's negative 1.

So already, I could rule this one out. This slope right over here looks like it's positive 1, so I’ll rule that out; it's definitely not 0. This slope also looks like positive 1, so I can rule that one out. This slope at (2, 2) actually does look like 0, so I'm liking this one right over here.

This slope at (2, 2) looks larger than 1, so I could rule that out. It was that straightforward to deduce that if any of these are going to be the accurate slope field, it’s this one. But just for kicks, we could keep going to verify that this is indeed the slope field.

So let's think about what happens when x is equal to 1. Whenever x is equal to y, you're going to get the derivative equaling 0. And you see that here; when you're at (4, 4), derivative equals 0. When it's (6, 6), derivative equals 0. At (-2, -2), derivative equals 0. So that feels good that this is the right slope field.

Then we could pick other arbitrary points. Let's say when x is 4, y is 2. Then the derivative here should be 4 minus 2, which is going to be 2. So when x is 4, y is 2, we do indeed see that the slope field is indicating a slope that looks like 2 right over here.

If it was the other way around, when x is, let’s say, x is -4 and y is -2, so (-4, -2), well, -4 minus -2 is going to be -2. And you can see that right over here.

(-4, -2) you can see the slope right over here. It's a little harder to see, looks like -2. So once again, in using even just this (2, 2) coordinates, we were able to deduce that this was the choice, but it just continues to confirm our original answer.

More Articles

View All
Canyon Catharsis | Badlands, Texas
I’ve been through this canyon over 750 times. This is a place where you can hear the voice of God bouncing off these walls in the wind. There’s no roar, no freeways, no trial. Silence. For years, I was a river guide here with Tony. I remember when Tony f…
Dangling modifiers | Syntax | Khan Academy
Hello Garans, hello Rosie, hi Paige. So in this video, we’re going to talk about something called a dangling modifier. So before we get into what a dangling modifier is, we can sort of talk about just what a modifier is. Rosie, do you want to tell us wha…
How I started my business. 📈
How did you end up in London and why London? I read originally you’re from New York. Yeah, I am from New York. I left the business for a while. I was in private equity, working with guys doing some corporate takeovers. And then I decided to get back into…
Homeroom with Sal & David C. Banks - Thursday, September 10
Hi everyone, welcome to our homeroom live stream. Sal here from Khan Academy. Really excited about the conversation we’re about to have with David Banks, who is really one of the leading educators in the country, president of the Eagle Academy Foundation.…
Partial derivatives of vector fields, component by component
Let’s continue thinking about partial derivatives of vector fields. This is one of those things that’s pretty good practice for some important concepts coming up in multivariable calculus, and it’s also just good to sit down and take a complicated thing a…
YC Partner Panel at the Seattle Female Founders Conference
So Doron Holly can stay up here because it’s now time for the YC partner panel. Hi everyone, I’m Sharon Pope. I work at YC, I run marketing programs, and I want to just remind you that you can submit questions. So go to slide o.com (SLIDO.COM). If you do…