yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: slope field from equation | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Which slope field is generated by the differential equation? The derivative of y with respect to x is equal to x minus y. And like always, pause this video and see if you can figure it out on your own.

Well, the easiest way to think about a slope field is if I was, if I needed to plot this slope field by hand, I would sample a bunch of x and y points, and then I would figure out what the derivative would have to be at that point.

What we can do here, since they've already drawn some candidate slope fields for us, is figure out what we think the slope field should be at some points and see which of these diagrams, these graphs, or these slope fields actually show that.

So, let me make a little table here. I'm going to have x, y, and then the derivative of y with respect to x. We can do it at a bunch of values. So let's think about it.

Let's think about when we're at this point right over here, when x is 2 and y is 2. When x is 2 and y is 2, the derivative of y with respect to x is going to be 2 minus 2; it's going to be equal to zero. Just with that, let's see here. This slope on this slope field does not look like it's zero; this looks like it's negative 1.

So already, I could rule this one out. This slope right over here looks like it's positive 1, so I’ll rule that out; it's definitely not 0. This slope also looks like positive 1, so I can rule that one out. This slope at (2, 2) actually does look like 0, so I'm liking this one right over here.

This slope at (2, 2) looks larger than 1, so I could rule that out. It was that straightforward to deduce that if any of these are going to be the accurate slope field, it’s this one. But just for kicks, we could keep going to verify that this is indeed the slope field.

So let's think about what happens when x is equal to 1. Whenever x is equal to y, you're going to get the derivative equaling 0. And you see that here; when you're at (4, 4), derivative equals 0. When it's (6, 6), derivative equals 0. At (-2, -2), derivative equals 0. So that feels good that this is the right slope field.

Then we could pick other arbitrary points. Let's say when x is 4, y is 2. Then the derivative here should be 4 minus 2, which is going to be 2. So when x is 4, y is 2, we do indeed see that the slope field is indicating a slope that looks like 2 right over here.

If it was the other way around, when x is, let’s say, x is -4 and y is -2, so (-4, -2), well, -4 minus -2 is going to be -2. And you can see that right over here.

(-4, -2) you can see the slope right over here. It's a little harder to see, looks like -2. So once again, in using even just this (2, 2) coordinates, we were able to deduce that this was the choice, but it just continues to confirm our original answer.

More Articles

View All
Angular velocity graphs due to multiple torques
A disc is initially rotating clockwise around a fixed axis with angular speed omega naught. At time t equals 0, the two forces, F₁ is equal to 20 newtons and F₂ is equal to 10 newtons, are exerted on the disk as shown in the figure below. So these are the…
The 2020 Recession | My Investing Concerns
What’s the guys? It’s Graham here. So I just want to have a really open, honest, and candid discussion about what’s been going on lately with the markets. The stimulus package is in place; what that means for you and my own thoughts about what’s likely to…
Fibonnaci on a Marble-Powered Computer
This is the Turing Tumble. It is a marble powered computer. So sorry nerds, it’s kind of a jock thing now. What you are watching is my solution to a puzzle posted on their forums. I have programmed the machine to output marbles according to the Fibonacci…
Controlling a plane in space
Hello everyone! So I’m talking about how to find the tangent plane to a graph, and I think the first step of that is to just figure out how we control planes in three dimensions in the first place. What I have pictured here is a red dot representing a po…
Kevin O'Leary's Watch Collection Journey | Kitco News
[Music] You’re probably one of the most diversified investors that I’ve had the privilege of speaking to. You’ve got stocks, cryptocurrencies, gold, venture capital from your Shark Tank deals, and of course, you’ve got watches. Let’s talk about your perso…
Defending Virunga's Treasures | Explorer
[Music] I am hunting down the story, but I’m not your standard, uh, correspondent. I’m a wide-eyed, enthusiastic guy that loves the world we live in. I mean, of course, I’ve heard a lot about Congo, but I can’t sort of get away from these, uh, romantic no…