yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: slope field from equation | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Which slope field is generated by the differential equation? The derivative of y with respect to x is equal to x minus y. And like always, pause this video and see if you can figure it out on your own.

Well, the easiest way to think about a slope field is if I was, if I needed to plot this slope field by hand, I would sample a bunch of x and y points, and then I would figure out what the derivative would have to be at that point.

What we can do here, since they've already drawn some candidate slope fields for us, is figure out what we think the slope field should be at some points and see which of these diagrams, these graphs, or these slope fields actually show that.

So, let me make a little table here. I'm going to have x, y, and then the derivative of y with respect to x. We can do it at a bunch of values. So let's think about it.

Let's think about when we're at this point right over here, when x is 2 and y is 2. When x is 2 and y is 2, the derivative of y with respect to x is going to be 2 minus 2; it's going to be equal to zero. Just with that, let's see here. This slope on this slope field does not look like it's zero; this looks like it's negative 1.

So already, I could rule this one out. This slope right over here looks like it's positive 1, so I’ll rule that out; it's definitely not 0. This slope also looks like positive 1, so I can rule that one out. This slope at (2, 2) actually does look like 0, so I'm liking this one right over here.

This slope at (2, 2) looks larger than 1, so I could rule that out. It was that straightforward to deduce that if any of these are going to be the accurate slope field, it’s this one. But just for kicks, we could keep going to verify that this is indeed the slope field.

So let's think about what happens when x is equal to 1. Whenever x is equal to y, you're going to get the derivative equaling 0. And you see that here; when you're at (4, 4), derivative equals 0. When it's (6, 6), derivative equals 0. At (-2, -2), derivative equals 0. So that feels good that this is the right slope field.

Then we could pick other arbitrary points. Let's say when x is 4, y is 2. Then the derivative here should be 4 minus 2, which is going to be 2. So when x is 4, y is 2, we do indeed see that the slope field is indicating a slope that looks like 2 right over here.

If it was the other way around, when x is, let’s say, x is -4 and y is -2, so (-4, -2), well, -4 minus -2 is going to be -2. And you can see that right over here.

(-4, -2) you can see the slope right over here. It's a little harder to see, looks like -2. So once again, in using even just this (2, 2) coordinates, we were able to deduce that this was the choice, but it just continues to confirm our original answer.

More Articles

View All
1,000km Cable to the Stars - The Skyhook
Getting to space is hard. Right now, it’s like going up on a mountain on a unicycle—with a backpack full of explosives. Incredibly slow, you can’t transport a lot of stuff, and you might die. A rocket needs to reach a velocity about 40,000 km an hour to e…
Facebook Freebooting - Smarter Every Day 128
Hey, it’s me Destin. Welcome back to Smarter Every Day. I want to do something a little bit different today; let’s start with a story. Once there was a kingdom where wealth was determined by what sheep you owned. There was a rich man who had many, many s…
CS50 Lecture by Mark Zuckerberg - 7 December 2005
MICHAEL D. SMITH: This afternoon I have the pleasure of introducing Mark Zuckerberg, which is one of our guest speakers this semester to come and talk a little bit about computer science in the real world. As most of you probably know, as you guys all do …
Gordon Ramsay's Best Moments | Uncharted Season 4 | National Geographic
Three, two, one, go! I feel like I’m moving a body. How do we know? I tested one; this C—this is so weird. G reckons he can open oysters, but I say you’re better at the shocking. I know about that! You want a Shu off? We have off. Oh, for Shu’s sake! 12 e…
How to Build a Lean-to Shelter | Live Free or Die
[Music] I see white oak trees. I’ve got P medals to build with. This is a good spot. Shelter is critical. Without shelter, I’m not a trapper. I’m going to be out there surviving instead of trapping. That’ll be the framework of my lean-to. A lean-to shelt…
How Bacteria Rule Over Your Body – The Microbiome
Microbes are everywhere, on your phone, in your water bottle, on your hands before you wash them, on your hands after you wash them, and literally everywhere else on top of you too. Microbes are omnipresent at any moment, and there is nothing we can do ab…