yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Introduction to polynomial division


4m read
·Nov 10, 2024

Earlier in your algebraic careers, you learned how to multiply polynomials. So, for example, if we had (x + 2) times (4x + 5), we learned that this is the same thing as really doing the distributive property twice.

You could multiply (x) times (4x) to get (4x^2). You could multiply (x) times (5) to get (5x). You could multiply (2) times (4x) to get (8x), and you could multiply (2) times (5) to get (10). If what I just did looks foreign to you, I encourage you to review multiplying binomials on Khan Academy.

This could be simplified as being (4x^2 + 13x + 10). What we will now do as we advance our algebraic careers is to think about how we go the other way around. How do we divide polynomials?

So, for example, we might see an expression like this: (4x^2 + 13x + 10) divided by (x + 2). Now, you might already know from your knowledge of multiplication and division that this is really reversing what we just did up here.

If (x + 2) times (4x + 5) is equal to this business, then this business divided by (x + 2) should be equal to (4x + 5). Even if you didn't have this information that we have up here, there are ways that you would have approached this.

One way is that you could have tried to factor what we have here in the numerator. You could have said, "Hey, let me maybe factor this by grouping." I must do that right over here: (4x^2 + 13x + 10). When you factor by grouping, you say, "Hey, can I think of two numbers whose product is equal to (4) times (10)?"

So I say (a \times b) is equal to (40), and whose sum is equal to (13). So (a + b) is equal to (13). Let's see what it could be. It could be (8) and (5), so (a) is equal to (8) and (b) is equal to (5).

This is just factoring by grouping right over here. Once again, if this is unfamiliar to you, I encourage you to review factoring by grouping on Khan Academy. So we can break apart this (13x) as an (8x) and a (5x), so we can rewrite this as (4x^2 + 8x + 5x + 10).

Notice it's just redoing what we did up here, but we're assuming that we don't even know about what we did up here. This someone just gave us this quadratic and said factor it. Here, you could say, "Alright, for these first two terms, I could factor out a (4x)."

So it becomes (4x) times (x + 2), and then these second two terms I could factor out a (5), so plus (5) times (x + 2). Then, I can factor out an (x + 2), so it becomes (x + 2).

I'll scroll down a little bit. It becomes (x + 2) times (4x + 5), which is exactly what we had up there. So you could rewrite this expression that involves divisions, sometimes called a rational expression, as we can rewrite this as (\frac{x + 2 \times (4x + 5)}{x + 2}).

As long as (x) does not equal (-2), we can divide the numerator and denominator by (x + 2), and we're going to be left with (4x + 5). We could constrain it; we could say (4x) not equaling (-2).

This is just a little bit of a primer. As we go deeper, we'll do many, many, many examples of this, and we'll also see that there are other techniques other than just factoring this numerator over here.

We're going to do it with higher degree polynomials, third degree polynomials, and we're going to learn something known as polynomial division. It's going to look an awful lot, and it's actually going to have a lot of similarities with the long division that you likely learned in probably fourth or fifth grade.

We're going to take expressions like (x + 2) and we're going to divide it into (4x^2 + 13x + 10). Instead of place value, we'll have our new notion of place value, which is around which degree term you're thinking about.

We're going to do things like, and we're going to do these completely in other videos: "Hey, how many times does (x) go into (4x^2)?" Hey, it goes (4x) times. So you'd write the (4x) there, and then you multiply (4x) times (x) to get (4x^2).

(4x) times (2) is (8x). Then you subtract these, and then you keep going just like you would typically do long division. (13x - 8x) is (5x), and then you bring that (10) down and then you say, "Hey, how many times does (x) go into (5x)?"

You say, "Hey, it goes five times." (5) times (x) is equal to (5x), (5) times (2) is equal to (10). Then you subtract this, and you're left with no remainder.

Notice you just saw when (x + 2) is divided into this, you get (4x + 5), just what we saw right over there. So we're going to explore these multiple techniques, including polynomial division, and we're also going to see what happens when you do have a remainder there.

More Articles

View All
Crawling Down A Torpedo Tube -US NAVY Nuclear Submarine - Smarter Every Day 241
Hey, it’s me, Destin. Welcome back to Smarter Every Day. We’re right in the middle of a deep dive here on Smarter Every Day into nuclear submarines. We’re investigating all these different things about how nuclear submarines work, and we’re trying to lear…
How to sell a $15,000,000 private jet!
Hey Steve, Daddy’s finally agreed to let me buy my first jet, but he’s only giving me a 15 million budget. 15 million? That’s not so bad! Let’s say you want an airplane, maybe 10 years old or so. All right, let’s see what you recommend. If we take $15 mi…
A Fun, Animated History of the Reformation and the Man Who Started It All | Short Film Showcase
[Music] A most precise and nuanced look into the life of the man, legend, and visionary Martin Luther. One day, when Luther is 21 years old, he experiences something which will affect him for the rest of his life. Suddenly, a thunderstorm—a wild, violent…
Is The 5-Second Rule True?
Hey, Vsauce. Michael here. And bananas are fantastic. They’re actually one of the most radioactive foods we regularly eat. Sometimes they’re difficult to peel from the top. One of my favorite ways to avoid that is to simply hold the banana and snap it in …
I FOUND THE 5 WORST CREDIT CARDS EVER...(AVOID THESE!)
[Music] What’s up you guys, it’s Graham here! So buckle your seatbelts, ladies and gentlemen. I hope you’re sitting down for this one. You know, on this channel we’ve talked about the best credit cards to get free stuff, the best credit cards for free tra…
Federal and state powers and the Tenth and Fourteenth Amendments | Khan Academy
What we’re going to do in this video is talk a little bit more about federal powers versus state powers. As we’ve mentioned in other videos, this is a very relevant topic because even today you’ll have supreme court decisions being decided based on citing…