yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Introduction to polynomial division


4m read
·Nov 10, 2024

Earlier in your algebraic careers, you learned how to multiply polynomials. So, for example, if we had (x + 2) times (4x + 5), we learned that this is the same thing as really doing the distributive property twice.

You could multiply (x) times (4x) to get (4x^2). You could multiply (x) times (5) to get (5x). You could multiply (2) times (4x) to get (8x), and you could multiply (2) times (5) to get (10). If what I just did looks foreign to you, I encourage you to review multiplying binomials on Khan Academy.

This could be simplified as being (4x^2 + 13x + 10). What we will now do as we advance our algebraic careers is to think about how we go the other way around. How do we divide polynomials?

So, for example, we might see an expression like this: (4x^2 + 13x + 10) divided by (x + 2). Now, you might already know from your knowledge of multiplication and division that this is really reversing what we just did up here.

If (x + 2) times (4x + 5) is equal to this business, then this business divided by (x + 2) should be equal to (4x + 5). Even if you didn't have this information that we have up here, there are ways that you would have approached this.

One way is that you could have tried to factor what we have here in the numerator. You could have said, "Hey, let me maybe factor this by grouping." I must do that right over here: (4x^2 + 13x + 10). When you factor by grouping, you say, "Hey, can I think of two numbers whose product is equal to (4) times (10)?"

So I say (a \times b) is equal to (40), and whose sum is equal to (13). So (a + b) is equal to (13). Let's see what it could be. It could be (8) and (5), so (a) is equal to (8) and (b) is equal to (5).

This is just factoring by grouping right over here. Once again, if this is unfamiliar to you, I encourage you to review factoring by grouping on Khan Academy. So we can break apart this (13x) as an (8x) and a (5x), so we can rewrite this as (4x^2 + 8x + 5x + 10).

Notice it's just redoing what we did up here, but we're assuming that we don't even know about what we did up here. This someone just gave us this quadratic and said factor it. Here, you could say, "Alright, for these first two terms, I could factor out a (4x)."

So it becomes (4x) times (x + 2), and then these second two terms I could factor out a (5), so plus (5) times (x + 2). Then, I can factor out an (x + 2), so it becomes (x + 2).

I'll scroll down a little bit. It becomes (x + 2) times (4x + 5), which is exactly what we had up there. So you could rewrite this expression that involves divisions, sometimes called a rational expression, as we can rewrite this as (\frac{x + 2 \times (4x + 5)}{x + 2}).

As long as (x) does not equal (-2), we can divide the numerator and denominator by (x + 2), and we're going to be left with (4x + 5). We could constrain it; we could say (4x) not equaling (-2).

This is just a little bit of a primer. As we go deeper, we'll do many, many, many examples of this, and we'll also see that there are other techniques other than just factoring this numerator over here.

We're going to do it with higher degree polynomials, third degree polynomials, and we're going to learn something known as polynomial division. It's going to look an awful lot, and it's actually going to have a lot of similarities with the long division that you likely learned in probably fourth or fifth grade.

We're going to take expressions like (x + 2) and we're going to divide it into (4x^2 + 13x + 10). Instead of place value, we'll have our new notion of place value, which is around which degree term you're thinking about.

We're going to do things like, and we're going to do these completely in other videos: "Hey, how many times does (x) go into (4x^2)?" Hey, it goes (4x) times. So you'd write the (4x) there, and then you multiply (4x) times (x) to get (4x^2).

(4x) times (2) is (8x). Then you subtract these, and then you keep going just like you would typically do long division. (13x - 8x) is (5x), and then you bring that (10) down and then you say, "Hey, how many times does (x) go into (5x)?"

You say, "Hey, it goes five times." (5) times (x) is equal to (5x), (5) times (2) is equal to (10). Then you subtract this, and you're left with no remainder.

Notice you just saw when (x + 2) is divided into this, you get (4x + 5), just what we saw right over there. So we're going to explore these multiple techniques, including polynomial division, and we're also going to see what happens when you do have a remainder there.

More Articles

View All
Winners and losers from inflation and deflation | AP Macroeconomics | Khan Academy
What we’re going to do in this video is talk more about inflation and deflation, which we’ve talked about in other videos. But we’re going to talk about it in the context of who benefits and who gets hurt, especially in a situation where people are lendin…
Bond enthalpies | Thermodynamics | AP Chemistry | Khan Academy
Bond enthalpy is the change in enthalpy, or delta H, for breaking a particular bond in one mole of a gaseous substance. If we think about the diatomic chlorine molecule, so Cl₂, down here is a little picture of Cl₂. Each of the green spheres is a chlorine…
90 Seconds to Midnight
First, you’ll have to know what happens when an atomic bomb explodes. You’ll know when it comes; we hope it never comes, but get ready. It looks something like this: in 1947, an international group of researchers who had previously worked on the Manhattan…
Second derivatives (implicit equations): find expression | AP Calculus AB | Khan Academy
Let’s say that we’re given the equation that (y^2 - x^2 = 4), and our goal is to find the second derivative of (y) with respect to (x). We want to find an expression for it in terms of (x) and (y). So pause this video and see if you can work through this.…
The Most Complex Language in the World
You are cells: your muscles, organs, skin, and hair. They are in your blood and in your bones. Cells are biological robots. They don’t want anything; they don’t feel anything. They are never sad or happy; they just are right here, right now. They’re as co…
Don Cheadle Visits Central Valley | Years of Living Dangerously
The episode that we’re shooting now is about California and how we’re seeing the effects of climate change here dramatically, with temperatures rising and the U.S. losing the snowpack. How that is having an effect on water specifically, and how the lack o…