yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2017 AP Calculus AB/BC 4a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

We are now going to cover the famous, or perhaps infamous, potato problem from the 2017 AP Calculus exam. At time ( T ) equals zero, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius at time ( T ) equals zero, and the internal temperature of the potato is greater than 27 degrees for all times ( T ) greater than zero. I would guess that the ambient room temperature is 27 degrees Celsius, and so that's why the temperature would approach this; but it will always stay a little bit greater than that.

As ( T ) gets larger and larger, the internal temperature of the potato at time ( T ) minutes can be modeled by the function ( H ) that satisfies the differential equation ( \frac{dH}{dt} ). The derivative of our internal temperature with respect to time is equal to negative ( \frac{1}{4} ) times ( R ), the difference between our internal temperature and the ambient room temperature, where ( H(t) ) is measured in degrees Celsius and ( H(0) ) is equal to 91.

So before I even read Part A, let's just make sense of what this differential equation is telling us. So let's see if it's consistent with our intuition. Let me draw some axes here. So this is my y-axis, and this right over here is my ( t ) axis. Now, if the ambient room temperature is 27 degrees Celsius, I'll just draw there; that's what the room temperature is doing.

We know at ( T = 0 ), our potato is at 91 degrees. So see, that's 27; 91 might be right over there, 91. This is all in degrees Celsius, and what you would expect intuitively is that it would start to cool. When there's a big difference between the potato and the room, maybe its rate of change is steeper than when there's a little difference.

So you would expect the graph to look something like this. You would expect it to look something like this and then asymptote towards a temperature of 27 degrees Celsius. This is what you would expect to see, and this differential equation is consistent with that.

Notice this is for all ( T ) greater than zero; this is going to be a negative value because our potato is greater than 27 for ( T ) greater than zero. So this part here is going to be positive, but then you multiply positive times negative ( \frac{1}{4} ). You're constantly going to have a negative rate of change, which makes sense: the potato is cooling down.

It also makes sense that your rate of change is proportional to the difference between the temperature of the potato and the ambient room temperature. When there's a big difference, you expect a steeper rate of change, but then when there's less of a difference, the rate of change you could imagine becomes less and less and less negative as we asymptote towards the ambient temperature.

So, with this out of the way, now let's tackle Part A: Write an equation for the line tangent to the graph of ( H ) at ( T = 0 ). Use this equation to approximate the internal temperature of the potato at time ( T = 3 ).

So what are we going to do? Well, we're going to think about what's going on at time ( T = 0 ), right over here. We want the equation of the tangent line, which might look something like this at ( T = 0 ). So this thing would be of the form ( Y = ) the slope of the equation of the tangent line. Well, it would be the derivative of our function at that point, so ( \frac{dH}{dt} ) times ( T ) plus our y-intercept.

Where does it intersect the y-axis here? Well, when ( T ) is equal to 0, the value of this equation is going to be 91 because it intersects our graph right at that point ( (0, 91) ). So, what is our derivative of ( H ) with respect to ( T ) at time ( T = 0 ), right at this point right over here? Well, we just have to look at this. You could also write this as ( H' (T) ) right over here.

So if we want to think about ( H' (0) ), that's going to be equal to negative one-fourth times ( H(0) - 27 ). What is our initial temperature minus 27? This is of course 91 degrees; they tell us that multiple times. We've even drawn it a few times: ( 91 - 27 = 64 ).

( 64 ) times negative ( \frac{1}{4} ) is equal to negative ( 16 ). So this is negative ( 16 ) right over here. So just like that, we have the equation for the line tangent to the graph of ( H ) at ( T = 0 ). I'll write it one more time: it is, a mini drumroll here, ( Y = -16T + 91 ).

That's the equation of that tangent line right over there. Then they say we want to use this equation to approximate the internal temperature of the potato at time ( T = 3 ). So let's say that this is time ( T = 3 ) right over here. We want to approximate the temperature that this model describes, right over here, but we're going to do it using the line.

So we're going to evaluate the line at ( T = 3 ). So then we would get, let's see, negative ( 16 ) times ( 3 ) plus ( 91 ) is equal to, this is negative ( 48 ) plus ( 91 ) is equal to, what is that? ( 43 ).

So this is equal to ( 43 ) degrees Celsius. So this right over here is the equation for the line tangent to the graph of ( H ) at ( T = 0 ), and this right over here is our approximation using that equation of the tangent line of the internal temperature of the potato at time ( T = 3 ).

More Articles

View All
Why Does the Moon Orbit Earth?
Now tell me what does the moon do? Uh, the moon orbits the Earth. I know it. Let’s do an orbit. Can we do an orbit? Okay, so go like this. I’m guessing, I’m guessing around, around. If you will, you spinning it? Are you going to… doesn’t it stay? Isn’t it…
Introduction to the public policy process | US government and civics | Khan Academy
One idea that we’re going to keep coming back to in our study of government is the notion of public policy and how public policy is actually made. What we’re going to do in this video is focus on what you could consider to be the five stages of the policy…
15 Biggest Threats to Your Financial Security
Have you ever felt like your financial security was walking a tightrope? It can feel like any small gust of wind, a sudden expense, a job hiccup, or an unexpected twist in life could throw everything out of balance. But what if you could see those gusts o…
Grizz Quiz: How Much Do You Know About Grizzly Bears? | Short Film Showcase
Maybe they’re your worst nightmare, or perhaps they bring a smile to your face. Grizzly bears are famous for triggering a whole range of different emotions, most of them passionate. You might have asked you a couple of questions. Let me start with this on…
He Spent His Career Studying a Frog. Then He Discovered Its True Identity. | Short Film Showcase
[Music] So, after all the different tree frogs, there is one group that really captivated my interest, and that was the leaf frogs. You can just imagine seeing one of those in the wild; it’s just incredible. You know, the great big eyes open, they’ve got …
32 Minutes of YouTube “Safe” Content | Kellie-Jay Keen AKA Posie Parker EP 378
Hello everyone! We’re facing a bit of a conundrum here with my podcast and at the Daily Wire in general. I have an interview with Kelly J Keene, otherwise known as Posey Parker, that we want to offer to everyone. Um, we’re quite convinced that it will be …