yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Associative and commutative properties of addition with negatives | 7th grade | Khan Academy


3m read
·Nov 10, 2024

What we're going to do in this video is evaluate this pretty hairy expression. We could just try to do it; we could go from left to right, but it feels like there might be a simpler way to do it. I'm adding 13 here, and then I'm subtracting 13. I have a negative 5 here, and then I have a positive 5.

You might be tempted to say, "Well, maybe I could change the order of that." I'm adding and subtracting things. Well, if we were just adding a bunch of numbers, you could change the order. For example, we know that 9 plus 7 is equal to 16, and if I just change the order, the commutative property tells us, "Well, 7 plus 9." It applies to addition. If I swap the order here, it's still going to be equal to 16. But that's not true if I do 9 minus 7 or 7 minus 9. If I change the order, I'm not getting the same result. The commutative property does not apply to subtraction.

This top expression is positive 2, this bottom expression is negative 2. So I can't just use the commutative property here to change the order with which I am adding and subtracting because I have subtraction here. But what if I could rewrite this expression so it only involves addition? How can you do that, Sal? You are probably thinking, and the key realization is: when you subtract a number, it's the same thing as adding the opposite.

For example, if I have 6 minus 3, that is the same thing as adding the opposite of positive 3, which is negative 3. Or if I had 6 minus negative 3, subtracting a number is the same thing as adding its opposite. So what I could do is, all of these places where I'm subtracting a number, instead I could just rewrite it so I'm adding the opposite.

So let me do that. I can rewrite this expression as negative 5 plus 13. So far I'm only adding here. I'm subtracting all of a sudden minus 21. Subtracting a number, well, I can rewrite that as adding its opposite. So subtracting—let me just use another color—subtracting a number is the same thing as adding its opposite. All right, let me keep going. Then I'm adding a 5. Remember, I'm just trying to make this so I'm just adding a bunch of things instead of adding and subtracting.

I have the plus 21. Now again, I am subtracting a number, so I can rewrite that as adding—I'm subtracting a positive 13. I can rewrite that as adding a negative 13. And then, last but not least, over here, I am subtracting again. I'm subtracting a number, so I can rewrite that as adding the opposite of this number. So I'm now adding positive 11. Subtracting negative 11 is the same thing as adding positive 11.

Now, why did I do this? Well, now I can use the commutative property. All I'm doing is I'm adding a bunch of numbers now, so I can swap the order in which I add. So I could now rewrite it. Let's see, I have a negative 5, and now let me add this positive 5 next. So, add the positive 5, and then I have—I'm adding a positive 13. And to that, I can add the negative 13. Remember, the only reason why I can now swap the order is because I'm only adding a bunch of integers.

Next, I have this negative 21, so let me circle that—I'm adding a negative 21. Adding negative 21, and then I could add the positive 21, which is right over there, and then last but not least, I add 11. Now, why was all of this super useful? Well, now look what happens. Things start to simplify a lot. Not only when I'm doing addition can I use the commutative property, can I change the order, but I can also use the associative property very easily.

So I could start to say, "All right, let me add these two first," and I could also add these two. I can pair these up, and that's useful because these cancel out with each other; they're opposites. If I take a negative 5 plus a positive 5, that's a zero. A 13 plus a negative 13, that's a zero. A negative 21 plus 21, that's a zero. And so what am I left with? I am just left with a positive 11.

So hopefully you see that if I can rewrite subtraction as adding the opposite, I can now use the commutative and the associative properties to really simplify things, which is really useful for the rest of your mathematical careers. I encourage you, in your own time, go left to right with this original expression, and you'll see that you get this exact same result. It's just going to actually take you a lot more time.

More Articles

View All
Financial Minimalist Home Tour | How I Live For Free
What’s up guys? It’s Graham here. So one week ago, I made a video explaining why I’m a financial minimalist. In that video, I explained that despite how much money I make, I still live in the same one-bedroom, 850 square-foot duplex as I have been for qui…
Illustrating the Beauty of a Disappearing World | Short Film Showcase
The big thing that I’m trying to do with my work is give a chance for people to connect with that landscape, to cultivate a deeper understanding, and hopefully inspire them to make a difference. I am—I just kind of disappeared into the color and the form …
Advice on Organizing and Running Growth Teams from Dan Hockenmaier and Gustaf Alströmer
Today we have Dan Hakan Meyer and Gustav All Strimer. So, Dan was the founder, advised investor, and advisor at Basis One, which is growth strategy consulting. Previous to that, you were a director of growth marketing at Thumbtack. Gustav’s a partner at Y…
Meditation: Can It Really Rewire Our Brains?
Take a deep breath. Can you feel that immediate sense of calm, like a weight has been lifted off of your shoulders, even if just for a second? If you’re watching this right now, there’s a huge chance that you’ve just sat down after a busy day, or perhaps …
The Tragedy of Freedom | Jean-Paul Sartre
What if we’d get a chance to start a new life? In his short novel Les Jeux Sont Faits, philosopher Jean-Paul Sartre plays with the idea of ‘starting all over’ in the same lifetime, despite the decisions we have made in the past. Even though we have free w…
Adding decimals with ones and tenths parts
Last video, we got a little bit of practice adding decimals that involved tths. Now let’s do slightly more complicated examples. So let’s say we want to add four to 5.7, or we could read the second number as 5 and 7⁄10. Pause this video and see if you ca…