yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Associative and commutative properties of addition with negatives | 7th grade | Khan Academy


3m read
·Nov 10, 2024

What we're going to do in this video is evaluate this pretty hairy expression. We could just try to do it; we could go from left to right, but it feels like there might be a simpler way to do it. I'm adding 13 here, and then I'm subtracting 13. I have a negative 5 here, and then I have a positive 5.

You might be tempted to say, "Well, maybe I could change the order of that." I'm adding and subtracting things. Well, if we were just adding a bunch of numbers, you could change the order. For example, we know that 9 plus 7 is equal to 16, and if I just change the order, the commutative property tells us, "Well, 7 plus 9." It applies to addition. If I swap the order here, it's still going to be equal to 16. But that's not true if I do 9 minus 7 or 7 minus 9. If I change the order, I'm not getting the same result. The commutative property does not apply to subtraction.

This top expression is positive 2, this bottom expression is negative 2. So I can't just use the commutative property here to change the order with which I am adding and subtracting because I have subtraction here. But what if I could rewrite this expression so it only involves addition? How can you do that, Sal? You are probably thinking, and the key realization is: when you subtract a number, it's the same thing as adding the opposite.

For example, if I have 6 minus 3, that is the same thing as adding the opposite of positive 3, which is negative 3. Or if I had 6 minus negative 3, subtracting a number is the same thing as adding its opposite. So what I could do is, all of these places where I'm subtracting a number, instead I could just rewrite it so I'm adding the opposite.

So let me do that. I can rewrite this expression as negative 5 plus 13. So far I'm only adding here. I'm subtracting all of a sudden minus 21. Subtracting a number, well, I can rewrite that as adding its opposite. So subtracting—let me just use another color—subtracting a number is the same thing as adding its opposite. All right, let me keep going. Then I'm adding a 5. Remember, I'm just trying to make this so I'm just adding a bunch of things instead of adding and subtracting.

I have the plus 21. Now again, I am subtracting a number, so I can rewrite that as adding—I'm subtracting a positive 13. I can rewrite that as adding a negative 13. And then, last but not least, over here, I am subtracting again. I'm subtracting a number, so I can rewrite that as adding the opposite of this number. So I'm now adding positive 11. Subtracting negative 11 is the same thing as adding positive 11.

Now, why did I do this? Well, now I can use the commutative property. All I'm doing is I'm adding a bunch of numbers now, so I can swap the order in which I add. So I could now rewrite it. Let's see, I have a negative 5, and now let me add this positive 5 next. So, add the positive 5, and then I have—I'm adding a positive 13. And to that, I can add the negative 13. Remember, the only reason why I can now swap the order is because I'm only adding a bunch of integers.

Next, I have this negative 21, so let me circle that—I'm adding a negative 21. Adding negative 21, and then I could add the positive 21, which is right over there, and then last but not least, I add 11. Now, why was all of this super useful? Well, now look what happens. Things start to simplify a lot. Not only when I'm doing addition can I use the commutative property, can I change the order, but I can also use the associative property very easily.

So I could start to say, "All right, let me add these two first," and I could also add these two. I can pair these up, and that's useful because these cancel out with each other; they're opposites. If I take a negative 5 plus a positive 5, that's a zero. A 13 plus a negative 13, that's a zero. A negative 21 plus 21, that's a zero. And so what am I left with? I am just left with a positive 11.

So hopefully you see that if I can rewrite subtraction as adding the opposite, I can now use the commutative and the associative properties to really simplify things, which is really useful for the rest of your mathematical careers. I encourage you, in your own time, go left to right with this original expression, and you'll see that you get this exact same result. It's just going to actually take you a lot more time.

More Articles

View All
Modern Lives, Ancient Caves | Podcast | Overheard at National Geographic
[Music] They had wanted to move out of the caves into more permanent English-built structures. The caves were only a temporary place where the first settlers arrived in. It’s the year 1681. Followers of William Penn have arrived in the New World from Engl…
What Mud From Glacial Lakes Can Tell Us About Our History | National Geographic
[Music] Climate change is all around us. Now we’ve gathered data; it’s real. We see it in the record, and while climate has changed over the whole lifecycle of this planet, the changes that we’re seeing now are very dramatic. [Music] Everest is iconic; e…
The Stock Market JUST Went From BAD To WORSE | How To Prepare
All right, so this is getting out of control. First, we had Facebook plummet 26% in a single day. Then we had Netflix fall 35% overnight as they lost subscribers. Shortly after, Walmart drops 25% on missed earnings. And then the nail in the coffin: Tarjay…
When being alone is a choice... (personal journey)
When someone spends more time in solitude than is considered normal, then people begin to worry. What’s going on with this person? Is he doing okay? Is she depressed? And so we tell them to get out there, meet people, and connect. “Humans are social anima…
The LARGEST Wealth Transfer Just Started | How To Prepare
What’s up guys, it’s Graham here. So you’re probably going to want to sit down for this because we’ve got a major problem. In June, it was reported that 61 percent of Americans are living paycheck to paycheck. As of a recent report, higher inflation and r…
Multiplying and dividing decimals by 10
We’ve already learned that when we multiply by ten, let’s say we took the number 53 and we were to multiply it by ten, it has the effect of shifting all the digits one place to the left. So this should be a review for you, but this was going to be 530. We…