yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Divergence formula, part 1


3m read
·Nov 11, 2024

Hello everyone. So, now that we have an intuition for what divergence is trying to represent, let's start actually drilling in on a formula. The first thing I want to do is just limit our perspective to functions that only have an x component, or rather where the y component of the output is just zero.

So, this is some kind of vector field, and if there's only an x component, what this means is going to look like is all of the vectors only go left or right, and there's kind of no up or down involved in any of them.

So, in this case, let's start thinking about what positive divergence of your vector fields might look like near some point x, y. If you have your point, you know, this is the point x, y, somewhere sitting off in space.

Two cases where the divergence of this might look positive are: one, where nothing happens at the point, right? So, in this case, p would be equal to zero at our point. But then, to the left of it, things are moving to the left, meaning p, the, you know, the x component of our vector-valued function is negative, right? That's why the x component of this vector is negative.

But then, to the right, vectors would be moving off to the right, so over here, p would be positive. So, this would be an example of kind of a positive divergent circumstance where only the x component is responsible.

And what you'll notice here, this would be p starts negative, goes zero, then becomes positive. So, as you're changing in the x direction, p should be increasing. So, a positive divergence here seems to correspond to a positive partial derivative of p with respect to x.

And if that seems a little unfamiliar, if you're not sure how to think about, you know, partial derivatives of a component of a vector field, um, I have a video on that, and you can kind of take a look and refresh yourself on how you might think about this partial derivative of p with respect to x.

And once you do, hopefully, it makes sense why this specific positive divergence example corresponds with a positive partial derivative of p. But remember, this isn't the only way that a positive divergence might look. You could have another circumstance where, let's say, your point x, y actually has a vector attached to it.

So, this here, again, represents our point x, y, and in this specific example, this would be kind of p is positive. p of x, y is positive at your point there. But another way that positive divergence might look is that you have things coming in towards that point and things going away, but the things going away are bigger than the ones coming in.

But again, this kind of exhibits the idea of p increasing in value. You know, p starts off small; it's a positive but small component, and then it gets bigger, and then it gets even bigger.

So, once again, we have this idea of positive partial derivative of p with respect to x because changes in x, as you increase x, it causes an increase in p. This seems to correspond to positive divergence.

And you can even look at it if you go the other way, where you have a little bit of negative component to p here. So, p is a little bit negative, but to the left of your point, it's really negative, and then to the right, it's not nearly as negative.

In this case, it's kind of like as you're moving to the right, as x is increasing, you start off very negative and then only kind of negative, and then barely negative.

Once again, that corresponds to an increase in the value of p as x increases. So, what you'd expect is that a partial derivative of p, that x component of the output with respect to x, is going to be somewhere involved in the formula for the divergence of our vector field at a point x, y.

And in the next video, I'm going to go a similar line of reasoning to see what should go on with that y component.

More Articles

View All
Whip My MOVE Back and Forth -- Black Nerd Comedy
[Music] I whip my move back in for my place in it. That’s it, so fun with mommy! But if we move back, it will probably turn it back in for [ __ ] with my weed back before we mousse it. Nick Maxine for you know I love Nintendo is my friend. Oh, I can’t pre…
Writing standard equation of a circle | Mathematics II | High School Math | Khan Academy
[Voiceover] So we have a circle here and they specified some points for us. This little orangeish, or, I guess, maroonish-red point right over here is the center of the circle, and then this blue point is a point that happens to sit on the circle. And s…
Isotopes | Atomic structure and properties | AP Chemistry | Khan Academy
In other videos, we have talked about that the type of element that we are dealing with is defined by the number of protons in an atom’s nucleus. So for example, any atom with exactly one proton in its nucleus is by definition hydrogen. Any atom with six …
Managing your bank account | Banking | Financial Literacy | Khan Academy
In this video, we’re going to talk about how it can be very valuable to automate your deposits and your withdrawals into a checking account, and why that actually might be useful. So in the old days, what would typically happen is someone might cut a che…
Office Hours With Sal: Monday, March 16 Livestream From Homeroom
Hello Facebook and Twitter and now YouTube. Okay, thanks. Uh, uh, hello everyone! Asal here and, uh, so as promised, uh, we are going to continue with these daily live streams. Given all of the school closures that are happening around the country and aro…
The Riddle That Seems Impossible Even If You Know The Answer
There is a riddle that is so counterintuitive, it still seems wrong even if you know the answer. You’d think it’s an almost impossible number. I feel like you probably hit me with some truth bomb. I mean, if you’re trying to create controversy and you’…