yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Divergence formula, part 1


3m read
·Nov 11, 2024

Hello everyone. So, now that we have an intuition for what divergence is trying to represent, let's start actually drilling in on a formula. The first thing I want to do is just limit our perspective to functions that only have an x component, or rather where the y component of the output is just zero.

So, this is some kind of vector field, and if there's only an x component, what this means is going to look like is all of the vectors only go left or right, and there's kind of no up or down involved in any of them.

So, in this case, let's start thinking about what positive divergence of your vector fields might look like near some point x, y. If you have your point, you know, this is the point x, y, somewhere sitting off in space.

Two cases where the divergence of this might look positive are: one, where nothing happens at the point, right? So, in this case, p would be equal to zero at our point. But then, to the left of it, things are moving to the left, meaning p, the, you know, the x component of our vector-valued function is negative, right? That's why the x component of this vector is negative.

But then, to the right, vectors would be moving off to the right, so over here, p would be positive. So, this would be an example of kind of a positive divergent circumstance where only the x component is responsible.

And what you'll notice here, this would be p starts negative, goes zero, then becomes positive. So, as you're changing in the x direction, p should be increasing. So, a positive divergence here seems to correspond to a positive partial derivative of p with respect to x.

And if that seems a little unfamiliar, if you're not sure how to think about, you know, partial derivatives of a component of a vector field, um, I have a video on that, and you can kind of take a look and refresh yourself on how you might think about this partial derivative of p with respect to x.

And once you do, hopefully, it makes sense why this specific positive divergence example corresponds with a positive partial derivative of p. But remember, this isn't the only way that a positive divergence might look. You could have another circumstance where, let's say, your point x, y actually has a vector attached to it.

So, this here, again, represents our point x, y, and in this specific example, this would be kind of p is positive. p of x, y is positive at your point there. But another way that positive divergence might look is that you have things coming in towards that point and things going away, but the things going away are bigger than the ones coming in.

But again, this kind of exhibits the idea of p increasing in value. You know, p starts off small; it's a positive but small component, and then it gets bigger, and then it gets even bigger.

So, once again, we have this idea of positive partial derivative of p with respect to x because changes in x, as you increase x, it causes an increase in p. This seems to correspond to positive divergence.

And you can even look at it if you go the other way, where you have a little bit of negative component to p here. So, p is a little bit negative, but to the left of your point, it's really negative, and then to the right, it's not nearly as negative.

In this case, it's kind of like as you're moving to the right, as x is increasing, you start off very negative and then only kind of negative, and then barely negative.

Once again, that corresponds to an increase in the value of p as x increases. So, what you'd expect is that a partial derivative of p, that x component of the output with respect to x, is going to be somewhere involved in the formula for the divergence of our vector field at a point x, y.

And in the next video, I'm going to go a similar line of reasoning to see what should go on with that y component.

More Articles

View All
The presidential inauguration (part 1)
All right, guys! Well, welcome back to the [Music] channel. We’re in DC right now. We just had dinner, and now we’re at the hotel. My friends are actually here. We got an tell girl, Emma, and we also have a new guest. We have Riley. Today has been so far …
The Physics Of Basketball | StarTalk
We’re exploring the physics of basketball, featuring my interview with NBA All-Star Kareem Abdul-Jabbar. Check it out. A rebound—in basketball, you have to get a sense of how the thing is going to bounce before the thing makes that bounce so that you can…
Worked example: using recursive formula for arithmetic sequence | High School Math | Khan Academy
We are told b of 1 is equal to negative 7, and b of n is equal to b of n minus 1 plus 12. They’re asking us to find the fourth term in the sequence. So, what we have up here, which you could use a function definition, it’s really defining the terms of a s…
Pythagorean theorem with right triangle
We’re asked to find the value of x in the isosceles triangle shown below. So that is the base of this triangle. So pause this video and see if you can figure that out. Well, the key realization to solve this is to realize that this altitude that they dro…
Where will Tesla be in 10 years? (w/ @HyperChangeTV)
[Music] Hey guys! Welcome back to yet another episode of the New Money Advent Calendar. We’re still going strong, and a very special video is coming in for you guys today - another collab! This time with my mate, Gally Russell, over in Seattle at the mome…
A tour inside the vampish G450 of @sandracorinna #sckaviation#gulfstreamG450
How much did it cost you to do the complete airplane? Over 5.5 million? Wow, wow, wow! I mean, you like it? It’s amazing! I don’t know if I feel like James Bond or Dr. Evil; it’s unbelievable. Catwoman? Oh, Catwoman! Sorry, tell me about it. I went for …