yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable differential equation (with taking log of both sides) | Khan Academy


2m read
·Nov 11, 2024

Let's say we need to find a solution to the differential equation that the derivative of y with respect to x is equal to x squared over e to the y. Pause this video and see if you can have a go at it. I will give you a clue: it is a separable differential equation.

All right, now let's do this together. So whenever you see any differential equation, the first thing you should try to see is: is it separable? When I say separable, I mean I can get all the expressions that deal with y on the same side as the dy, and I can separate those from the expressions that deal with x, and they need to be on the same side as my differential dx.

So how can we do that? Well, if we multiply both sides by e to the y, then e to the y will go away right over here, so we will get rid of this y expression from the right-hand side. Then we can multiply both sides by dx.

So if we did that, let me move my screen over a bit to the left. I’m going to multiply both sides by e to the y, and I’m also going to multiply both sides by dx. Multiplying by dx gets rid of the dx on the left-hand side, and it sits on the right-hand side with the x squared. So all of this is now e to the y dy is equal to x squared dx.

Just the fact that we were able to do this shows that it is separable. Now what we can do now is integrate both sides of this equation.

So let's do that. What is the integral of e to the y dy? Well, one of the amazing things about the expression, or you could say the function, something is equal to e to the — and normally we say e to the x, but in this case it’s e to the y — is that the anti-derivative of this is just e to the y. We’ve learned that in multiple videos; I always express my fascination with it.

So this is just e to the y, and likewise, if you took the derivative of e to the y with respect to y, it would be e to the y. Remember this works because we are integrating with respect to y here. So the integral of e to the y with respect to y is e to the y, and that is going to be equal to the anti-derivative of x squared.

Well, that is, we increment the exponent, so that gets to x to the third power, and we divide by that incremented exponent. Since I took the indefinite integral of both sides, I have to put a constant on at least one of these sides. So let me throw it over here, plus c.

Just to finish up, especially on a lot of examinations like the AP exam, they might want you to write in a form where y is explicitly an explicit function of x. So to do that, we can take the natural log of both sides.

So we take the natural log of that side, and we take the natural log of that side. Well, the natural log of e to the y — what power do we have to raise e to get to e to the y? Well, that's why we took the natural log; this just simplifies as y.

And we get y is equal to the natural log of what we have right over here: x to the third over three plus c. And we are done.

More Articles

View All
Stop Looking For The Success Formula
Hello Alexa, welcome to Honest Talks. This is a series where we talk about things that we personally find interesting, and we think you might too. Today’s topic is how to craft your own success formula. So these numbers, they were worth millions of dolla…
A Selfish Argument for Making the World a Better Place – Egoistic Altruism
Until recently, the vast majority of the world population worked on farms, and the total production of the world’s economy was mostly the total agricultural output. And this output was limited by the fixed size of the land. The total output of the economy…
Continuing the Fight for Political Representation | 100 Years After Women's Suffrage
Good afternoon everyone. My name is Rachel Hardigan, and I’m a senior writer with National Geographic. Today, we’re continuing our conversation, our celebration of women’s suffrage, and talking about the ongoing fight for political representation. It too…
Colbert's Life in the Swamp | Live Free or Die
[Music] [Music] Every day in the woods is just a constant challenge. It’s urgency after urgency, project after project. Got an otter! It’s a river otter. This is one of my most valuable pelts; it brings a top price, and, uh, not many people do, but I try…
How to start learning a language-Language tips from a Polyglot
Hi guys, it’s me, Judy. I’m a first-year medical student in Turkey, and today we’re gonna be talking about how to start learning a new language. A lot of people want to learn a new language, but most of us don’t know where to start or what to do. So, I ho…
'Big Short' Investor Reveals His Biggest Bet for 2024.
I’m always a little bit hesitant to try to ask you for Big Picture top down analysis, ‘cause a lot of times you don’t really want to go there. I actually have an opinion on this one. Good! If you don’t know that man, his name is Steve Eisan. He’s the seni…