yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable differential equation (with taking log of both sides) | Khan Academy


2m read
·Nov 11, 2024

Let's say we need to find a solution to the differential equation that the derivative of y with respect to x is equal to x squared over e to the y. Pause this video and see if you can have a go at it. I will give you a clue: it is a separable differential equation.

All right, now let's do this together. So whenever you see any differential equation, the first thing you should try to see is: is it separable? When I say separable, I mean I can get all the expressions that deal with y on the same side as the dy, and I can separate those from the expressions that deal with x, and they need to be on the same side as my differential dx.

So how can we do that? Well, if we multiply both sides by e to the y, then e to the y will go away right over here, so we will get rid of this y expression from the right-hand side. Then we can multiply both sides by dx.

So if we did that, let me move my screen over a bit to the left. I’m going to multiply both sides by e to the y, and I’m also going to multiply both sides by dx. Multiplying by dx gets rid of the dx on the left-hand side, and it sits on the right-hand side with the x squared. So all of this is now e to the y dy is equal to x squared dx.

Just the fact that we were able to do this shows that it is separable. Now what we can do now is integrate both sides of this equation.

So let's do that. What is the integral of e to the y dy? Well, one of the amazing things about the expression, or you could say the function, something is equal to e to the — and normally we say e to the x, but in this case it’s e to the y — is that the anti-derivative of this is just e to the y. We’ve learned that in multiple videos; I always express my fascination with it.

So this is just e to the y, and likewise, if you took the derivative of e to the y with respect to y, it would be e to the y. Remember this works because we are integrating with respect to y here. So the integral of e to the y with respect to y is e to the y, and that is going to be equal to the anti-derivative of x squared.

Well, that is, we increment the exponent, so that gets to x to the third power, and we divide by that incremented exponent. Since I took the indefinite integral of both sides, I have to put a constant on at least one of these sides. So let me throw it over here, plus c.

Just to finish up, especially on a lot of examinations like the AP exam, they might want you to write in a form where y is explicitly an explicit function of x. So to do that, we can take the natural log of both sides.

So we take the natural log of that side, and we take the natural log of that side. Well, the natural log of e to the y — what power do we have to raise e to get to e to the y? Well, that's why we took the natural log; this just simplifies as y.

And we get y is equal to the natural log of what we have right over here: x to the third over three plus c. And we are done.

More Articles

View All
Insurance-funded stateless military: a defense
Fringe elements posted a video recently explaining the difficulties with different proposals for how a stateless society will deal with military defense. He looked at militias, PDAs, and drew a nuclear arsenal insurance agencies, and explained problems wi…
Opening a bank account | Banking | Financial Literacy | Khan Academy
So let’s think about what’s involved when you decide to open up a bank account. Well, the first step is where you want to open it and what type of account you want to open. So your choice of bank might depend on things like the interest that they might g…
Squishy Robot Fingers: A Breakthrough for Underwater Science | National Geographic
We’re in the northern part of the Red Sea, and the reason we’re here is we’re trying to test out our squishy robot fingers for the first time in a reef. So we tested these squishy fingers in a swimming pool, and now we wanted to put them to the true test…
A.I. Policy and Public Perception - Miles Brundage and Tim Hwang
Alright guys, I think the most important and pressing question is, now that cryptocurrency gets all the attention and AI is no longer the hottest thing of technology, how are you dealing with it? Yeah, Ben Hamner of Kaggle had a good line on this. He sai…
Safari Live - Day 134 | National Geographic
You you you you you you you you you you you you this program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Hello, hello, hello, and welcome to a bleak, gray, overcast, cool morning he…
ChatGPTIntro
Hello! So, what I’m going to do in this video alongside you is explore using ChatGPT, which I’m sure many of you have heard of. So the first question is: Why is it called ChatGPT? Well, the GPT part stands for Generative Pre-trained Transformer, and I gu…