yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable differential equation (with taking log of both sides) | Khan Academy


2m read
·Nov 11, 2024

Let's say we need to find a solution to the differential equation that the derivative of y with respect to x is equal to x squared over e to the y. Pause this video and see if you can have a go at it. I will give you a clue: it is a separable differential equation.

All right, now let's do this together. So whenever you see any differential equation, the first thing you should try to see is: is it separable? When I say separable, I mean I can get all the expressions that deal with y on the same side as the dy, and I can separate those from the expressions that deal with x, and they need to be on the same side as my differential dx.

So how can we do that? Well, if we multiply both sides by e to the y, then e to the y will go away right over here, so we will get rid of this y expression from the right-hand side. Then we can multiply both sides by dx.

So if we did that, let me move my screen over a bit to the left. I’m going to multiply both sides by e to the y, and I’m also going to multiply both sides by dx. Multiplying by dx gets rid of the dx on the left-hand side, and it sits on the right-hand side with the x squared. So all of this is now e to the y dy is equal to x squared dx.

Just the fact that we were able to do this shows that it is separable. Now what we can do now is integrate both sides of this equation.

So let's do that. What is the integral of e to the y dy? Well, one of the amazing things about the expression, or you could say the function, something is equal to e to the — and normally we say e to the x, but in this case it’s e to the y — is that the anti-derivative of this is just e to the y. We’ve learned that in multiple videos; I always express my fascination with it.

So this is just e to the y, and likewise, if you took the derivative of e to the y with respect to y, it would be e to the y. Remember this works because we are integrating with respect to y here. So the integral of e to the y with respect to y is e to the y, and that is going to be equal to the anti-derivative of x squared.

Well, that is, we increment the exponent, so that gets to x to the third power, and we divide by that incremented exponent. Since I took the indefinite integral of both sides, I have to put a constant on at least one of these sides. So let me throw it over here, plus c.

Just to finish up, especially on a lot of examinations like the AP exam, they might want you to write in a form where y is explicitly an explicit function of x. So to do that, we can take the natural log of both sides.

So we take the natural log of that side, and we take the natural log of that side. Well, the natural log of e to the y — what power do we have to raise e to get to e to the y? Well, that's why we took the natural log; this just simplifies as y.

And we get y is equal to the natural log of what we have right over here: x to the third over three plus c. And we are done.

More Articles

View All
Safari Live - Day 154 | National Geographic
And caucuses viewer discretion is advised. Hello everyone and a very warm welcome to our sunset safari drive today, all the way from Juma Game Reserve in South Africa. My name is David and with me, Tree on the camera, AC VM. You might wonder what I have b…
Why I DON'T flip houses (revealing my favorite real estate investing approach)
What’s up you guys, it’s Graham here. So one of the questions I get asked a lot is, am I going to be flipping this place or am I going to be selling it in the short term? The answer is no. In fact, of all five places I bought, I’ve never once wanted to se…
The Monroe Doctrine
On December 2nd, 1823, US President James Monroe was giving his annual State of the Union Address to Congress when he threw in a couple of remarks about the United States’s relationship with the powers of Europe. He said, “The American continents, by the …
Camping on Sea Ice with Whale Hunters | Podcast | Overheard at National Geographic
An evo is an amazing word for something terrifying. It is when the pack ice that is floating on the other side of the ocean gets pushed by the wind, and it comes in and impacts the ice that we’re standing on. This is photographer Keely Wean. In 2018, he w…
The Top 5 BEST Investing Apps
What’s up you guys, it’s Graham here. So, as usual, I always read all of the comments, and if you guys ask me to make a specific video, I will go ahead, I will listen, I will make the video. And this video is exactly that, because recently I’ve received n…
Natural selection and evolution | Mechanisms of evolution | High school biology | Khan Academy
Many of y’all are probably familiar with the term evolution, and some of y’all, I’m guessing, are also familiar with the term natural selection, although it isn’t used quite as much as evolution. What we’re going to do in this video is see how these are c…