yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable differential equation (with taking log of both sides) | Khan Academy


2m read
·Nov 11, 2024

Let's say we need to find a solution to the differential equation that the derivative of y with respect to x is equal to x squared over e to the y. Pause this video and see if you can have a go at it. I will give you a clue: it is a separable differential equation.

All right, now let's do this together. So whenever you see any differential equation, the first thing you should try to see is: is it separable? When I say separable, I mean I can get all the expressions that deal with y on the same side as the dy, and I can separate those from the expressions that deal with x, and they need to be on the same side as my differential dx.

So how can we do that? Well, if we multiply both sides by e to the y, then e to the y will go away right over here, so we will get rid of this y expression from the right-hand side. Then we can multiply both sides by dx.

So if we did that, let me move my screen over a bit to the left. I’m going to multiply both sides by e to the y, and I’m also going to multiply both sides by dx. Multiplying by dx gets rid of the dx on the left-hand side, and it sits on the right-hand side with the x squared. So all of this is now e to the y dy is equal to x squared dx.

Just the fact that we were able to do this shows that it is separable. Now what we can do now is integrate both sides of this equation.

So let's do that. What is the integral of e to the y dy? Well, one of the amazing things about the expression, or you could say the function, something is equal to e to the — and normally we say e to the x, but in this case it’s e to the y — is that the anti-derivative of this is just e to the y. We’ve learned that in multiple videos; I always express my fascination with it.

So this is just e to the y, and likewise, if you took the derivative of e to the y with respect to y, it would be e to the y. Remember this works because we are integrating with respect to y here. So the integral of e to the y with respect to y is e to the y, and that is going to be equal to the anti-derivative of x squared.

Well, that is, we increment the exponent, so that gets to x to the third power, and we divide by that incremented exponent. Since I took the indefinite integral of both sides, I have to put a constant on at least one of these sides. So let me throw it over here, plus c.

Just to finish up, especially on a lot of examinations like the AP exam, they might want you to write in a form where y is explicitly an explicit function of x. So to do that, we can take the natural log of both sides.

So we take the natural log of that side, and we take the natural log of that side. Well, the natural log of e to the y — what power do we have to raise e to get to e to the y? Well, that's why we took the natural log; this just simplifies as y.

And we get y is equal to the natural log of what we have right over here: x to the third over three plus c. And we are done.

More Articles

View All
15 Ways Successful People Stay Motivated
While most people struggle to get off the couch and start doing the work, successful people are masters at staying motivated and keep pushing the ball forward, and this is exactly how they do it. Welcome to Alux. First up: vision setting. Every journey n…
How overstimulation is ruining your life
During certain periods of my life, I have a very difficult time focusing on pretty much anything important or difficult. During these periods, it seems almost impossible to break out of the social media limbo, where you’re just constantly switching betwee…
Worked example: Identifying an element from its mass spectrum | AP Chemistry | Khan Academy
So let’s say that we have some mystery substance here, and we know that it’s a pure element. We need to figure out what it is. Well, scientists have a method, and we go into the details or more details in other videos called mass. Sometimes it’s known as …
Worked example identifying experiment | Study design | AP Statistics | Khan Academy
So we have some type of study described here. I encourage you to pause this video and think about whether this is an observational study, an experiment, or a sample study. Also, think about whether it was conducted well. All right, now let’s do this toge…
How do you know if you should be a business owner?
How do you know if you should be a business owner? I think one of the critical things is to know if you’re a business owner or an entrepreneur. There’s two different questions here. You can be a business owner and have an entrepreneur as a partner or some…
Camo Sharks: Breaching Test | SharkFest | National Geographic
RYAN JOHNSON: One of the most important tests that we’re going to do is the breaching test. GIBBS KUGURU: Breaching is sort of this ambush attack. They need speed, power, stealth. RYAN JOHNSON: This is when we’re going to be able to measure the color of…