yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How the COVID-19 vaccines were created so quickly - Kaitlyn Sadtler and Elizabeth Wayne


3m read
·Nov 8, 2024

In the 20th century, most vaccines took well over a decade to research, test, and produce. But the vaccines for COVID-19 cleared the threshold for emergency use in less than 11 months. The secret behind this speed is a medical technology that’s been developing for decades: the mRNA vaccine.

This new treatment uses our body’s existing cellular machinery to trigger an immune response, protecting us from viruses without ever experiencing an infection. And in the future, this approach might be able to treat new diseases almost as quickly as they emerge. So how do these revolutionary vaccines work?

The key ingredient is in the name. mRNA, or messenger ribonucleic acid, is a naturally occurring molecule that encodes the instructions for producing proteins. When our cells process mRNA, a part of the cell called the ribosome translates and follows these instructions to build the encoded protein. The mRNA in these vaccines works in exactly the same way, but scientists use the molecule to safely introduce our body to a virus.

First, researchers encode trillions of mRNA molecules with the instructions for a specific viral protein. This part of the virus is harmless by itself, but helpful for training our body’s immune response. Then, they inject those molecules into a nanoparticle roughly 1,000 times smaller than the average cell. This nanoparticle is made of lipids, the same type of fatty material that forms the membrane around our cells.

But these lipids have been specially engineered to protect the mRNA on its journey through the body and assist its entry into the cell. Lastly, the final ingredients are added: sugars and salt to help keep the nanoparticles intact until they reach their destination. Before use, the vaccine is kept at a temperature of -20 to -80 degrees Celsius to ensure none of the components break down.

Once injected, the nanoparticles disperse and encounter cells. The lipid coating on each nanoparticle fuses with the lipid membrane of a cell and releases the mRNA to do its work. At this point, we should note that while the vaccine is delivering viral genetic material into our cells, it’s impossible for this material to alter our DNA. mRNA is a short-lived molecule that would need additional enzymes and chemical signals to even access our DNA, let alone change it.

And none of these DNA altering components are present in mRNA vaccines. Once inside the cell, the ribosome translates the mRNA’s instructions and begins assembling the viral protein. In COVID-19 vaccines, that protein is one of the spikes typically found on the virus’s surface. Without the rest of the virus, this lone spike is not infectious, but it does trigger our immune response.

Activating the immune system can be taxing on the body, resulting in brief fatigue, fever, and muscle soreness in some people. But this doesn’t mean the recipient is sick—it means the vaccine is working. The body is producing antibodies to fight that viral protein, that will then stick around to defend against future COVID-19 infections. And since this particular protein is likely to be found in most COVID variants, these antibodies should reduce the threat of catching new strains.

This approach offers significant advantages over previous vaccines. Traditional vaccines contain weakened versions of live viruses or amputated sections of a virus, both of which required time intensive research to prepare and unique chemical treatments to safely inject. But mRNA vaccines don’t actually contain any viral particles, so they don’t have to be built from scratch to safely adjust each virus.

In fact, every mRNA vaccine could have roughly the same list of ingredients. Imagine a reliable, robustly tested vaccine that can treat any disease by swapping out a single component. To treat a new illness, researchers would identify the right viral protein, encode it into mRNA, and then swap that mRNA into the existing vaccine platform. This could make it possible to develop new vaccines in weeks, giving humanity a flexible new tool in the never-ending fight against disease.

More Articles

View All
Easy Photography Life Hack!
Okay, I just learned the greatest life hack. If you see something that you want to take a picture of, but you left your phone at home, don’t worry. Just do this: blindfold yourself for like 30 minutes, and then stare at what you want to take a picture of …
Associative and commutative properties of addition with negatives | 7th grade | Khan Academy
What we’re going to do in this video is evaluate this pretty hairy expression. We could just try to do it; we could go from left to right, but it feels like there might be a simpler way to do it. I’m adding 13 here, and then I’m subtracting 13. I have a n…
15 Things To Do When Life Doesn’t Go Your Way
In the novel of Our Lives, plot twists are essential to the richness of the story. They’re here to make your Ted Talk more interesting. Maybe you got fired, lost someone, or your flight got delayed, missed your connection, and now you’re writing a script …
Examples dividing by tenths and hundredths
Welcome! So let’s see if we can figure out what 8 divided by 0.4 is. Pause this video and see if you can work through that. All right, so we’re trying to figure out what eight ones divided by four tenths is. One way to think about that is to think about…
This is what 65% of Millionaires ALL have in common...
What’s up you guys, it’s Graham here. So I put something interesting the other day, and that was it: 65 percent of millionaires have three sources of income, 45 percent of millionaires have four sources of income, and 29 percent of millionaires have five …
MARS: Humanity's Most Dangerous Mission
Just recently, 18 new Earth-sized exoplanets have been discovered. They range from 70% Earth size to more than twice as large as our planet. We know at least one of them, for certain, has conditions that almost mirror ours on Earth. So, there are worlds o…