yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How the COVID-19 vaccines were created so quickly - Kaitlyn Sadtler and Elizabeth Wayne


3m read
·Nov 8, 2024

In the 20th century, most vaccines took well over a decade to research, test, and produce. But the vaccines for COVID-19 cleared the threshold for emergency use in less than 11 months. The secret behind this speed is a medical technology that’s been developing for decades: the mRNA vaccine.

This new treatment uses our body’s existing cellular machinery to trigger an immune response, protecting us from viruses without ever experiencing an infection. And in the future, this approach might be able to treat new diseases almost as quickly as they emerge. So how do these revolutionary vaccines work?

The key ingredient is in the name. mRNA, or messenger ribonucleic acid, is a naturally occurring molecule that encodes the instructions for producing proteins. When our cells process mRNA, a part of the cell called the ribosome translates and follows these instructions to build the encoded protein. The mRNA in these vaccines works in exactly the same way, but scientists use the molecule to safely introduce our body to a virus.

First, researchers encode trillions of mRNA molecules with the instructions for a specific viral protein. This part of the virus is harmless by itself, but helpful for training our body’s immune response. Then, they inject those molecules into a nanoparticle roughly 1,000 times smaller than the average cell. This nanoparticle is made of lipids, the same type of fatty material that forms the membrane around our cells.

But these lipids have been specially engineered to protect the mRNA on its journey through the body and assist its entry into the cell. Lastly, the final ingredients are added: sugars and salt to help keep the nanoparticles intact until they reach their destination. Before use, the vaccine is kept at a temperature of -20 to -80 degrees Celsius to ensure none of the components break down.

Once injected, the nanoparticles disperse and encounter cells. The lipid coating on each nanoparticle fuses with the lipid membrane of a cell and releases the mRNA to do its work. At this point, we should note that while the vaccine is delivering viral genetic material into our cells, it’s impossible for this material to alter our DNA. mRNA is a short-lived molecule that would need additional enzymes and chemical signals to even access our DNA, let alone change it.

And none of these DNA altering components are present in mRNA vaccines. Once inside the cell, the ribosome translates the mRNA’s instructions and begins assembling the viral protein. In COVID-19 vaccines, that protein is one of the spikes typically found on the virus’s surface. Without the rest of the virus, this lone spike is not infectious, but it does trigger our immune response.

Activating the immune system can be taxing on the body, resulting in brief fatigue, fever, and muscle soreness in some people. But this doesn’t mean the recipient is sick—it means the vaccine is working. The body is producing antibodies to fight that viral protein, that will then stick around to defend against future COVID-19 infections. And since this particular protein is likely to be found in most COVID variants, these antibodies should reduce the threat of catching new strains.

This approach offers significant advantages over previous vaccines. Traditional vaccines contain weakened versions of live viruses or amputated sections of a virus, both of which required time intensive research to prepare and unique chemical treatments to safely inject. But mRNA vaccines don’t actually contain any viral particles, so they don’t have to be built from scratch to safely adjust each virus.

In fact, every mRNA vaccine could have roughly the same list of ingredients. Imagine a reliable, robustly tested vaccine that can treat any disease by swapping out a single component. To treat a new illness, researchers would identify the right viral protein, encode it into mRNA, and then swap that mRNA into the existing vaccine platform. This could make it possible to develop new vaccines in weeks, giving humanity a flexible new tool in the never-ending fight against disease.

More Articles

View All
Artificial Intelligence - Mind Field (Ep 4)
When she said, “I love you, Harold”… Mm-hmm. What did you say back? Obviously, “I love you too.” Yeah? This is Harold. Harold and I are talking about his girlfriend, Monica. Who said it first, you or her? She said it to me. How’d it feel? It was …
15 Things Mentally Strong Men Don’t Do
You can tell if a man is mentally strong within a few minutes of meeting him. The way he speaks to you, the way he speaks about other people, and the things he says about himself will immediately let you know if this is a confident, self-assured person th…
Virtual ground
I want to take a look at our two op-amp circuits and make an interesting observation about how these things are behaving. When they are working properly, when they’re hooked up right, there’s something these things do that is really helpful and makes life…
Fentanyl Explained #shorts
Why does fentanyl feel so good? Let us try it so you don’t have to. Fentanyl reaches your brain in seconds, and like other opioids, binds to opioid receptors. It stops pain signals and also releases a flood of dopamine, so the pain melts away as you slide…
Two-sample t test for difference of means | AP Statistics | Khan Academy
Kaito grows tomatoes in two separate fields. When the tomatoes are ready to be picked, he is curious as to whether the sizes of his tomato plants differ between the two fields. He takes a random sample of plants from each field and measures the heights of…
Cameras Reveal the Secret Lives of a Mountain Lion Family | Short Film Showcase
Mountain lion, puma, cougar— all names for an animal that has long been misunderstood, feared, hunted, and eliminated from most of its range. The cougar is often believed to be solitary and even heartless, but recently, deep in the Wyoming Wind River Rang…