yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How the COVID-19 vaccines were created so quickly - Kaitlyn Sadtler and Elizabeth Wayne


3m read
·Nov 8, 2024

In the 20th century, most vaccines took well over a decade to research, test, and produce. But the vaccines for COVID-19 cleared the threshold for emergency use in less than 11 months. The secret behind this speed is a medical technology that’s been developing for decades: the mRNA vaccine.

This new treatment uses our body’s existing cellular machinery to trigger an immune response, protecting us from viruses without ever experiencing an infection. And in the future, this approach might be able to treat new diseases almost as quickly as they emerge. So how do these revolutionary vaccines work?

The key ingredient is in the name. mRNA, or messenger ribonucleic acid, is a naturally occurring molecule that encodes the instructions for producing proteins. When our cells process mRNA, a part of the cell called the ribosome translates and follows these instructions to build the encoded protein. The mRNA in these vaccines works in exactly the same way, but scientists use the molecule to safely introduce our body to a virus.

First, researchers encode trillions of mRNA molecules with the instructions for a specific viral protein. This part of the virus is harmless by itself, but helpful for training our body’s immune response. Then, they inject those molecules into a nanoparticle roughly 1,000 times smaller than the average cell. This nanoparticle is made of lipids, the same type of fatty material that forms the membrane around our cells.

But these lipids have been specially engineered to protect the mRNA on its journey through the body and assist its entry into the cell. Lastly, the final ingredients are added: sugars and salt to help keep the nanoparticles intact until they reach their destination. Before use, the vaccine is kept at a temperature of -20 to -80 degrees Celsius to ensure none of the components break down.

Once injected, the nanoparticles disperse and encounter cells. The lipid coating on each nanoparticle fuses with the lipid membrane of a cell and releases the mRNA to do its work. At this point, we should note that while the vaccine is delivering viral genetic material into our cells, it’s impossible for this material to alter our DNA. mRNA is a short-lived molecule that would need additional enzymes and chemical signals to even access our DNA, let alone change it.

And none of these DNA altering components are present in mRNA vaccines. Once inside the cell, the ribosome translates the mRNA’s instructions and begins assembling the viral protein. In COVID-19 vaccines, that protein is one of the spikes typically found on the virus’s surface. Without the rest of the virus, this lone spike is not infectious, but it does trigger our immune response.

Activating the immune system can be taxing on the body, resulting in brief fatigue, fever, and muscle soreness in some people. But this doesn’t mean the recipient is sick—it means the vaccine is working. The body is producing antibodies to fight that viral protein, that will then stick around to defend against future COVID-19 infections. And since this particular protein is likely to be found in most COVID variants, these antibodies should reduce the threat of catching new strains.

This approach offers significant advantages over previous vaccines. Traditional vaccines contain weakened versions of live viruses or amputated sections of a virus, both of which required time intensive research to prepare and unique chemical treatments to safely inject. But mRNA vaccines don’t actually contain any viral particles, so they don’t have to be built from scratch to safely adjust each virus.

In fact, every mRNA vaccine could have roughly the same list of ingredients. Imagine a reliable, robustly tested vaccine that can treat any disease by swapping out a single component. To treat a new illness, researchers would identify the right viral protein, encode it into mRNA, and then swap that mRNA into the existing vaccine platform. This could make it possible to develop new vaccines in weeks, giving humanity a flexible new tool in the never-ending fight against disease.

More Articles

View All
How More Efficient Fishing Can Protect the Ocean | National Geographic
[Music] All the management strategies that we have today were really developed thousands of years ago by the Pacific Islanders. Things like closed areas, closed seasons for spawning, minimum size [Music] limits. Somebody would say, like, “Oh, he’s a fishe…
Threads That Speak: How The Inca Used Strings to Communicate | National Geographic
(Wind blowing) (Solemn music) (Engine humming) When you work with archaeological objects, you are like entering the world of your ancestors. (Mysterious music) I like to think that in a way, they talk to us. (Mysterious music) A Quipu is an accounting dev…
Personalized Stories Starring Your Kids: Khanmigo's Craft a Story! | Bedtime stories for kids
Hi parents! Are you looking to put a fresh spin on story time, or maybe you want to make bedtime more fun, engaging, and personalized? I’ve got something you’re going to love! Meet K Migo’s “Craft a Story” feature. Let me show you how it works. First, we…
Monthly payment versus total cost | Car buying | Financial Literacy | Khan Academy
In this video, we’re going to explore the tradeoff between trying to lower our monthly payment while also trying to lower the total amount of money we pay out to get a loan for a car. In this scenario, although this trade-off is true for many types of loa…
Why it’s EASIER to sell a $3,000,000 house vs a $300,000 house
What’s up, you guys? It’s Graham here. So, I get a lot of comments from aspiring real estate agents who think that the higher the price point, the more difficult the deal. Some like dealing with really high net worth buyers or sellers. Just because you’r…
Tariff and imports worked example | APⓇ Microeconomics | Khan Academy
We’re told sugar is freely traded in the world market. Assume that a country, Lorryland, is a price taker in the world market for sugar. Some of the sugar consumed in Lorryland is produced domestically, while the rest is imported. The world price of sugar…