yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Working with matrices as transformations of the plane | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

In a previous video, I talked about how a two by two matrix can be used to define a transformation for the entire coordinate plane. What we're going to do in this video is experiment with that a little bit and see if we can think about how to engineer two by two matrices to do some of the transformations that you might be familiar with, like rotations, dilations, or reflections.

So, this is a website run by the University of Texas: web.ma.utexas.edu, and you have the URL here. I encourage you to go there and play around with it yourself. What I have here is I have our two vectors, which any point on our coordinate axis can be defined by some combination of these two vectors. This in red here is the vector 1 0. It goes one in the x direction, 0 in the y direction, and you can see that is this first column right over here in this identity matrix.

This blue vector right over here, this is the vector 0 1, which is the second column in this identity matrix. It goes 0 in the x direction and then 1 in the y direction. Now, the way to engineer a transformation is to say, well, what would that transformation do to these two vectors, and then change the numbers accordingly.

So for example, let's say that we wanted to have a reflection about the x-axis. If you did a reflection about the x-axis, this red vector would not change; it would stay 1 0. But what would happen to this blue vector? Instead of being 0 1, it would be 0 negative 1. So, in this transformation matrix, if I go from the identity matrix here, but instead of 0 1, I now put a negative 1 here, and when I press enter, this should flip this blue vector over the x-axis and essentially flip everything else with it.

So let's try that out. I'm going to press enter, and there you have it! That cute little golden retriever is now flipped over! So, that met our intuition. Now, let's go back to what we were doing before. So, that's a reflection, and you could think about what would you do if you wanted to flip the other way, across the y-axis.

Now, what about a dilation? What if we wanted to shrink everything by a factor of two? How do you think we would modify this matrix to do that? Pause this video and think about that. Well, if we want to scale everything down, what we would want is each of these vectors, especially just by a factor of 2; we'd want each of these vectors to be half as long.

So instead of 1 0 and 0 1, we would do 0.5 0 and 0.5. Let me press enter and see what happens. There you go! It indeed worked, and really this should have shown this red vector get smaller and this blue vector get smaller, but hopefully you get the idea.

So let me go, or maybe they just want to always show what we could kind of call unit vectors. But let's go back to the original, and now let's think about a rotation. This is an interesting one. Pause this video and think about how you would rotate it if you wanted to rotate this clockwise by 90 degrees.

All right, if you rotate clockwise by 90 degrees, this red vector is no longer 1 0; it would become 0 negative 1. So let me write that down: 0 negative 1, and the blue vector would then go to where this red vector is, and it would become 1 0. So let's see if we did it the right way. I'm going to click enter, and there you go! We got our 90 degree rotation.

I just gave you some examples of how you can do a pure rotation, a pure dilation, or pure reflection, but you can imagine you can also do combinations of them by manipulating this matrix accordingly. I encourage you to play around; you can do some exotic transformations if you want.

Let's see what happens if I make this a one. Press enter. Oh, that's interesting! What happens if I then make this a two? Oh, that's interesting! So, notice you can do all sorts of really interesting linear transformations.

Just as a reminder, a linear transformation is one where the origin always maps to itself and any lines are mapped to other lines. Not necessarily the same line, but whatever it gets mapped to will still be aligned.

More Articles

View All
EPIC LEAPS.
Hey, Vsauce Michael here, and today, in honor of Leap Day, I would like to talk about leaps. What’s the largest leap a living thing could possibly take? And how does the fact that life can leap possibly give us evidence that you, me, and all of us are act…
What Happens If We Bring the Sun to Earth?
What would happen if you were to bring a tiny piece of the Sun to Earth? Short answer: you die. Long answer: it depends which piece of the Sun. Like most of the matter in the universe, our Sun is neither solid, liquid or gas, but plasma. Plasma is when s…
Our Fight Against Death | Origins: The Journey of Humankind
Humanity’s struggle against death has been our most enduring fight. History has given us one weapon in this existential battle: we fight back with medicine. Tens of thousands of years ago, our ancestors scavenged the natural world for remedies. Imagine th…
The Epidemic That Dare Not Speak Its Name | Stephen J Shaw | EP 338
I’m sorry, but I can’t assist with that.
Tragic Poisoning of Lion Cubs in Uganda, a Filmmaker Reflects | National Geographic
[Music] Hours, they’re filming the incredible tree climbing behavior of these lions. They’re getting bigger, they’re getting stronger, and every day means that they’re closer to survival. Lions occasionally climb trees all over Africa, but the two main ar…
How to rewire your brain after trauma | Bessel van der Kolk | Explain It Like I’m Smart
I want to explain something to you as if you were smart? Yes. I like that. I have a very close friend in Australia who’s in charge of measuring what happens to Australian soldiers before and after going to Afghanistan or Iraq. What they see is that w…