yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Working with matrices as transformations of the plane | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

In a previous video, I talked about how a two by two matrix can be used to define a transformation for the entire coordinate plane. What we're going to do in this video is experiment with that a little bit and see if we can think about how to engineer two by two matrices to do some of the transformations that you might be familiar with, like rotations, dilations, or reflections.

So, this is a website run by the University of Texas: web.ma.utexas.edu, and you have the URL here. I encourage you to go there and play around with it yourself. What I have here is I have our two vectors, which any point on our coordinate axis can be defined by some combination of these two vectors. This in red here is the vector 1 0. It goes one in the x direction, 0 in the y direction, and you can see that is this first column right over here in this identity matrix.

This blue vector right over here, this is the vector 0 1, which is the second column in this identity matrix. It goes 0 in the x direction and then 1 in the y direction. Now, the way to engineer a transformation is to say, well, what would that transformation do to these two vectors, and then change the numbers accordingly.

So for example, let's say that we wanted to have a reflection about the x-axis. If you did a reflection about the x-axis, this red vector would not change; it would stay 1 0. But what would happen to this blue vector? Instead of being 0 1, it would be 0 negative 1. So, in this transformation matrix, if I go from the identity matrix here, but instead of 0 1, I now put a negative 1 here, and when I press enter, this should flip this blue vector over the x-axis and essentially flip everything else with it.

So let's try that out. I'm going to press enter, and there you have it! That cute little golden retriever is now flipped over! So, that met our intuition. Now, let's go back to what we were doing before. So, that's a reflection, and you could think about what would you do if you wanted to flip the other way, across the y-axis.

Now, what about a dilation? What if we wanted to shrink everything by a factor of two? How do you think we would modify this matrix to do that? Pause this video and think about that. Well, if we want to scale everything down, what we would want is each of these vectors, especially just by a factor of 2; we'd want each of these vectors to be half as long.

So instead of 1 0 and 0 1, we would do 0.5 0 and 0.5. Let me press enter and see what happens. There you go! It indeed worked, and really this should have shown this red vector get smaller and this blue vector get smaller, but hopefully you get the idea.

So let me go, or maybe they just want to always show what we could kind of call unit vectors. But let's go back to the original, and now let's think about a rotation. This is an interesting one. Pause this video and think about how you would rotate it if you wanted to rotate this clockwise by 90 degrees.

All right, if you rotate clockwise by 90 degrees, this red vector is no longer 1 0; it would become 0 negative 1. So let me write that down: 0 negative 1, and the blue vector would then go to where this red vector is, and it would become 1 0. So let's see if we did it the right way. I'm going to click enter, and there you go! We got our 90 degree rotation.

I just gave you some examples of how you can do a pure rotation, a pure dilation, or pure reflection, but you can imagine you can also do combinations of them by manipulating this matrix accordingly. I encourage you to play around; you can do some exotic transformations if you want.

Let's see what happens if I make this a one. Press enter. Oh, that's interesting! What happens if I then make this a two? Oh, that's interesting! So, notice you can do all sorts of really interesting linear transformations.

Just as a reminder, a linear transformation is one where the origin always maps to itself and any lines are mapped to other lines. Not necessarily the same line, but whatever it gets mapped to will still be aligned.

More Articles

View All
Why Are So Many Starfish Dying? | National Geographic
From Mexico all the way to Alaska, there has been a massive die-off of sea stars. The estimates are in the tens to hundreds of millions of sea stars that have died in the last couple of years. It’s one of the largest mortality events associated with a dis…
Life lessons in the Alaskan wilderness | Alaska: The Next Generation
Gotta have a subsistence lifestyle way to live out here. We eat from the sea. From the birds. Not really other ways to, uh, get food around here. Salmon only comes once a year and, uh, gotta try and the time they come around. Argh. Come on fish. You see a…
Common fractions (halves) | Math | 4th grade | Khan Academy
Let’s try to show that 0.5 is equal to one-half. We often hear people use these interchangeably; they use them back and forth. Maybe someone would say, “I have a 2.5 pound rat,” and then someone would say back to them, “Wow, a two and a half pound rat! Th…
Aretha Franklin Meets Dinah Washington | Genius: Aretha
[blues piano] DINAH WASHINGTON (Singing): What a difference a day made. 24 little hours brought the sun and the flowers where there used to be rain! My yesterday was blue, dear. C.L. FRANKLIN: Come on down here and join the party. Come on. DINAH WASHIN…
Charlie Munger: How to Get Rich During Inflation
What’s the best advice you have for individual investors to optimally deal with the negative impact of inflation, other than owning quality equities? Well, according to Charlie Munger, if you aren’t confused by what’s going on, you’re not paying attention…
Work at a Startup Expo 2019
So thank you so much. Quick round of applause for making it out here for all these companies that we’re going to be having a walk across here. It’s two o’clock, we want to keep it on time because we have a lot of great stuff to get through. So this is wh…