yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: problem involving definite integral (algebraic) | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

We are told the population of a town grows at a rate of ( e^{1.2t} - 2t ) people per year, where ( t ) is the number of years. At ( t = 2 ) years, the town has fifteen hundred people.

So first, they ask us approximately by how many people does the population grow between ( t = 2 ) and ( t = 5 ).

Then, what is the town's population at ( t = 5 ) years? If we actually figure out this first question, the second question is actually pretty straightforward. We figure out the amount that it grows and then add it to what we were at ( t = 2 ) and add it to fifteen hundred.

So pause this video and see if you can figure it out.

The key here is to appreciate that this right over here is expressing the rate of how fast the population is growing. We have been seeing in multiple videos now, let me just draw and do a quick review of this notion of a rate curve.

So those are my axes, and this is my ( t )-axis, my time axis, and this is showing me how my rate of change changes as a function of time.

So let's say it's something like this. Once again, if I said at this time right over here, this is my rate. This doesn't tell me, for example, what my population is. This tells me what is my rate of change of a population.

We have seen in previous videos that if you want to figure out the change in the thing, that the rate is met, that the rate is the rate of change of, say the change in population, you would find the area under the rate curve between those two appropriate times.

And why does that make sense? Well, imagine a very small change in time right over here. If you have a very small change in time and if you assume that your rate is approximately constant over that very small change in time, well then your change in, let's say we're measuring the rate of change of population here, your accumulation you could say is going to be your rate times your change in time, which would be the area of this rectangle.

So that would be roughly the area under the curve over that very, very small change in time.

So what we really want to do is find the area under this curve from ( t = 2 ) to ( t = 5 ). We have seen multiple times in calculus how to express that, so the definite integral from ( t ) is equal to 2 to ( t ) is equal to 5 of this expression ( e^{1.2t} - 2t , dt ).

If we just evaluate that, that will be the answer to this first question. So what is this going to be? Well, let's actually work it out.

So what is the antiderivative of ( e^{1.2t} )? Well, let me just try to do it over here.

If I'm trying to calculate, let me write it as ( e^{\frac{6}{5}t} ) (since ( 1.2t = \frac{6}{5}t )). This is an indefinite integral I'm just trying to figure out the anti-derivative here.

Well, if I had a ( \frac{6}{5} ) right over here, then ( u )-substitution or sometimes you would say the inverse chain rule would be very appropriate.

We could put a ( \frac{6}{5} ) there if we write a ( \frac{5}{6} ) right over here ( \frac{5}{6} \times \frac{6}{5} ) and we can take constants in and out of the integral like this – scaling constants I should say.

Well now, so this is going to be equal to ( \frac{5}{6} e^{\frac{6}{5} t} ). And if you're thinking about the indefinite integral, you would then have a plus ( c ) here of course, and you can verify that the derivative of this is indeed ( e^{1.2t} ).

So this is going to be equal to so this part right over here, the anti-derivative is ( \frac{5}{6} e^{\frac{6}{5}t} ) and then this part right over here, the anti-derivative of ( 2t ) is ( t^2 ), so minus ( t^2 ).

We are going to evaluate that at 5 and 2 and find the difference.

So let's evaluate this at when ( t = 5 ). Well, you are going to let me color code this a little bit. When ( t = 5 ), you get ( \frac{5}{6} e^{\frac{6}{5} \times 5} - 25 ).

And so from that, I want to subtract when we evaluate it at 2, we get ( \frac{5}{6} e^{\frac{6}{5} \times 2} - 4 ).

What do we get? Well, there's a couple of ways that we could do this.

We could write this as ( \frac{5}{6} (e^{6} - e^{2.4}) - 21 ).

So that would be ( -21 ) and I would need a calculator to figure this out.

So let me do that. Let me get my calculator on this computer, and there we go.

So let's see if we want to find ( e^{6} ); that’s 430. Okay, so then now let me figure out ( e^{2.4} ).

And I get equals so what's in parentheses is this number right here, so times ( \frac{5}{6} ), so ( \frac{5}{6} \times 430 - 21 ) is equal to this.

So if I round to the nearest hundredth, it's going to be approximately 306.00.

So this is approximately 306.00.

Approximately by how many people does the population grow between ( t = 2 ) and ( t = 5 )? Well, by approximately 306 people.

Let me write that down: so approximately 306 people.

And they say what is the town's population at ( t = 5 )?

Well at time ( t = 2 ), at two years we had fifteen hundred people and then we grow over this interval by three hundred six.

So ( 1500 + 306 ) is going to get me to deserve a little bit of a drum roll: 1806 people at ( t = 5 ) years.

More Articles

View All
1st Taxpayer-funded EV Station
We have the first taxpayer-funded EV charging station in the country. What does this say about the state of play with our EV infrastructure in the country? It’s way behind schedule, obviously. It’s actually taken back many companies that are thinking abo…
Problems Only Smart People Can Solve
You know, there’s a time and place when only certain types of people can solve a particular problem. It’s when you call in the big guns, and today we’re taking a look at some of those problems. Welcome to Alux. First up, what and when to cut. Just like a…
Honest Q&A About My Relationship, Smoking, Marriage, and More
Hello, hello! Let’s do a little Q&A. I basically collected some questions on my Instagram story. If you’re not following me on Instagram, what are you doing? Okay, I promise I’m going to be more active. Okay, I say this like every single month, and th…
2015 AP Calculus AB/BC 3cd | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Bob is writing his bicycle along the same path for ( 0 \leq t \leq 10 ). Bob’s velocity is modeled by ( b(t) = t^3 - 6t^2 + 300 ) where ( t ) is measured in minutes and ( b(t) ) is measured in meters per minute. Find Bob’s acceleration at time ( t = 5 ). …
Why You Should Put YOUR MASK On First (My Brain Without Oxygen) - Smarter Every Day 157
All right, I’ll make it super fast. It’s me, Destin. Welcome back to SmarterEveryDay. When you’re in a jet, if the cabin depressurizes, they drop this little mask out of the top. What happens if you’re in a depressurized cabin and you’re up above 15,000 f…
15 Things That Instantly Grant Status
Status is a why you think other people are better than you. Everybody wants status because it’s been ingrained in our evolution, self-actualization, and peer appreciation, said at the very top of Maslow’s Pyramid of Needs. Usually, status is built throug…